Skip to main content

Diffusive Higher-Order Moment Equations

  • 2001 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 773)

The drift-diffusion and energy-transport equations of Chaps. 5 and 6 are derived from the Boltzmann equation by considering the moments\( n = \int_B F\frac{\mathrm{d} k}{4\pi^3}, \quad ne = \int_B F E(k)\frac{\mathrm{d}k}{4\pi^3},\)where F is the distribution function. We have already indicated in Sect. 2.4 that this strategy can be generalized. In this chapter, we detail the derivation of a hierarchy of diffusive moment models.

Keywords

  • Boltzmann Equation
  • Moment Equation
  • Collision Operator
  • Diffusion Matrix
  • Moment Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89526-8_8
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-89526-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Hardcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Jüngel, S. Krause, and P. Pietra. A hierarchy of diffusive higher-order moment equations for semiconductors. SIAM J. Appl. Math. 68 (2007), 171–198.

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. H. Struchtrup. Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. SIAM Multiscale Model. Simul. 3 (2005), 221–243.

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. S. Ihara. Information Theory for Continuous Systems. World Scientific, Singapore, 1993.

    MATH  Google Scholar 

  4. W. Dreyer, M. Junk, and M. Kunik. On the approximation of kinetic equations by moment systems. Nonlinearity 14 (2001), 881–906.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  5. M. Junk. Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93 (1998), 1143–1167.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  6. J. Schneider. Entropic approximation in kinetic theory. ESAIM: Math. Mod. Numer. Anal. 38 (2004), 541–561.

    MATH  CrossRef  Google Scholar 

  7. T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr. Characterization of the hot electron distribution function using six moments. J. Appl. Phys. 91 (2002), 3869–3879.

    CrossRef  ADS  Google Scholar 

  8. T. Grasser. Non-parabolic macroscopic transport models for semiconductor device simulation. Physica A 349 (2005), 221–258.

    CrossRef  ADS  Google Scholar 

  9. K. Sonoda, M. Yamaji, K. Taniguchi, C. Hamaguchi, and S. Dunham. Moment expansion approach to calculate impact ionization rate in submicron silicon devices. J. Appl. Phys. 80 (1996), 5444–5448.

    CrossRef  ADS  Google Scholar 

  10. T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr. Using six moments of Boltzmann’s equation for device simulation. J. Appl. Phys. 90 (2001), 2389–2396.

    CrossRef  ADS  Google Scholar 

  11. N. Ben Abdallah and P. Degond. On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37 (1996), 3308–3333.

    Google Scholar 

  12. P. Degond, A. Jüngel, and P. Pietra. Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22 (2000), 986–1007.

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. S. Holst, A. Jüngel, and P. Pietra. A mixed finite-element discretization of the energy-transport equations for semiconductors. SIAM J. Sci. Comput. 24 (2003), 2058–2075.

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. T. Grasser, H. Kosina, and S. Selberherr. Hot carrier effects within macroscopic transport models. Internat. J. High Speed Electr. Sys. 13 (2003), 873–901.

    CrossRef  Google Scholar 

  15. T. Grasser, R. Kosik, v. Jungemann, H. Kosina, and S. Selberherr. Nonparabolic macroscopic transport models for device simulation based on bulk Monte Carlo data. J. Appl. Phys. 97 (2005), 093710.

    CrossRef  ADS  Google Scholar 

  16. M. Junk and V. Romano. Maximum entropy moment systems of the semiconductor Boltzmann equation using Kane’s dispersion relation. Continuum Mech. Thermodyn. 17 (2004), 247-267.

    CrossRef  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Diffusive Higher-Order Moment Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)