The drift-diffusion equations are derived by the moment method by employing only the zeroth-order moment \(\langle M\rangle = \int_B M\mathrm{d}k/4\pi^3\), where the Maxwellian M describes the equilibrium state. As explained in Sect. 2.4, we obtain more general diffusion equations by taking into account higher-order moments. The energy-transport equations are derived by choosing the moments \(n=\langle M\rangle\)(particle density) and \(ne=\langle E(k)M\rangle\)(energy density), where\(E(k)\)is the energy band. The results of Sect. 2.4 are valid only for a simple BGK collision operator. In this chapter, we will assume more realistic scattering terms including elastic, carrier–carrier, and inelastic collision processes. In the following we proceed as in [1] and [2].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
N. Ben Abdallah and P. Degond. On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37 (1996), 3308–3333.
P. Degond, C. Levermore, and C. Schmeiser. A note on the energy-transport limit of the semiconductor Boltzmann quation. In: N. Ben Abdallah et al. (eds.), Proceedings of Transport in Transition Regimes (Minneapolis, 2000), IMA Math. Appl. 135, 137–153. Springer, New York, 2004.
N. Ben Abdallah, P. Degond, and S. Génieys. An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84 (1996), 205–231.
R. Stratton. Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126 (1962), 2002–2014.
Y. Apanovich, E. Lyumkis, B. Polski, A. Shur, and P. Blakey. A comparison of energy balance and simplified hydrodynamic models for GaAs simulation. COMPEL 12 (1993), 221–230.
M. Rudan, A. Gnudi, and W. Quade. A generalized approach to the hydrodynamic model of semiconductor equations. In: G. Baccarani (ed.), Process and Device Modeling for Microelectronics, 109–154. Elsevier, Amsterdam, 1993.
D. Chen, E. Kan, U. Ravaioli, C. Shu, and R. Dutton. An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electr. Device Lett. 13 (1992), 26–28.
A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan, and G. Baccarani. A new discretization strategy of the semiconductor equations comprising momentum and energy balance. IEEE Trans. Computer-Aided Design Integr. Circuits Sys. 7 (1988), 231–242.
K. Souissi, F. Odeh, H. Tang, and A. Gnudi. Comparative studies of hydrodynamic and energy transport models. COMPEL 13 (1994), 439–453.
D. Woolard, H. Tian, R. Trew, M. Littlejohn, and K. Kim. Hydrodynamic electron-transport: Nonparabolic corrections to the streaming terms. Phys. Rev. B 44 (1991), 11119–11132.
W. Allegretto and H. Xie. Nonisothermal semiconductor systems. In: X. Liu and D. Siegel (eds.), Comparison Methods and Stability Theory. Lect. Notes Pure Appl. Math. 162, 17–24. Marcel Dekker, New York, 1994.
P. Degond, S. Génieys, and A. Jüngel. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76 (1997), 991–1015.
P. Degond, S. Génieys, and A. Jüngel. A steady-state system in nonequilibrium thermodynamics including thermal and electrical effects. Math. Meth. Appl. Sci. 21 (1998), 1399–1413.
A. Jüngel. Regularity and uniqueness of solutions to a parabolic system in nonequilibrium thermodynamics. Nonlin. Anal. 41 (2000), 669–688.
W. Fang and K. Ito. Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices. Math. Models Meth. Appl. Sci. 11 (2001), 827–840.
J. Griepentrog. An application of the implicit function theorem to an energy model of the semiconductor theory. Z. Angew. Math. Mech. 79 (1999), 43–51.
L. Chen and L. Hsiao. The solution of Lyumkis energy transport model in semiconductor science. Math. Meth. Appl. Sci. 26 (2003), 1421–1433.
L. Chen, L. Hsiao, and Y. Li. Large time behavior and energy relaxation time limit of the solutions to an energy transport model in semiconductors. J. Math. Anal. Appl. 312 (2005), 596–619.
Y. Apanovich, P. Blakey, R. Cottle, E. Lyumkis, B. Polsky, A. Shur, and A. Tcherniaev. Numerical simulations of submicrometer devices including coupled nonlocal transport and nonisothermal effects. IEEE Trans. Electr. Devices 42 (1995), 890–897.
M. Fournié. Numerical discretization of energy-transport model for semiconductors using high-order compact schemes. Appl. Math. Letters 15 (2002), 727–734.
C. Ringhofer. An entropy-based finite difference method for the energy transport system. Math. Models Meth. Appl. Sci. 11 (2001), 769–796.
F. Bosisio, R. Sacco, F. Saleri, and E. Gatti. Exponentially fitted mixed finite volumes for energy balance models in semiconductor device simulation. In: H. Bock et al. (eds.), Proceedings of ENUMATH 97, 188–197. World Scientific, Singapore, 1998.
P. Degond, A. Jüngel, and P. Pietra. Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22 (2000), 986–1007.
S. Gadau and A. Jüngel. A 3D mixed finite-element approximation of the semiconductor energy-transport equations. SIAM J. Sci. Comput. 31, (2008), 1120–1140.
S. Holst, A. Jüngel, and P. Pietra. An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comput. 25 (2004), 1698–1716.
C. Lab and P. Caussignac. An energy-transport model for semiconductor heterostructure devices: Application to AlGaAs/GaAs MODFETs. COMPEL 18 (1999), 61–76.
A. Marrocco and P. Montarnal. Simulation de modèles ‘‘energy transport’’ á l’aide des éléments finis mixtes. C. R. Acad. Sci. Paris, Sér. I 323 (1996), 535–541.
J. Jerome and C.-W. Shu. Energy models for one-carrier transport in semiconductor devices. In: W. Coughran et al. (eds.), Semiconductors, Part II, IMA Math. Appl. 59, 185–207. Springer, New York, 1994.
S. de Groot and P. Mazur. Nonequilibrium Thermodynamics. Dover Publications, New York, 1984.
H. Kreuzer. Nonequilibrium Thermodynamics and Its Statistical Foundation. Clarondon Press, Oxford, 1981.
H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341.
M. Lundstrom. Fundamentals of Carrier Transport. 2nd edition, Cambridge University Press, Cambridge, 2000.
K. Brennan. The Physics of Semiconductors. Cambridge University Press, Cambridge, 1999.
C. Schmeiser and A. Zwirchmayr. Elastic and drift-diffusion limits of electron–phonon interaction in semiconductors. Math. Models Meth. Appl. Sci. 8 (1998), 37–53.
E. Lyumkis, B. Polsky, A. Shur, and P. Visocky. Transient semiconductor device simulation including energy balance equation. COMPEL 11 (1992), 311–325.
A. Jüngel. Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, Basel, 2001.
Y. Choi and R. Lui. Multi-dimensional electrochemistry model. Arch. Rat. Mech. Anal. 130 (1995), 315–342.
Z. Deyl (ed.). Electrophoresis: A Survey of Techniques and Applications. Elsevier, Amsterdam, 1979.
A. Bermudez and C. Saguez. Mathematical formulation and numerical solution of an alloy solidification problem. In: A. Fasano (ed.), Free Boundary Problems: Theory and Applications, Vol.\ 1, 237–247. Pitman, Boston, 1983.
R. Hills, D. Loper, and P. Roberts. A thermodynamically consistent model of a mushy zone. Quart. J. Mech. Appl. Math. 36 (1983), 505–539.
S. de Groot. Thermodynamik irreversibler Prozesse. Bibliographisches Institut, Mann\-heim, 1960.
G. Albinus. A thermodynamically motivated formulation of the energy model of semiconductor devices. Preprint No.\ 210, WIAS Berlin, Germany, 1995.
S. Kawashima and Y. Shizuta. On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J., II.\ Ser. 40 (1988), 449–464.
P. Degond, S. Génieys, and A. Jüngel. Symmetrization and entropy inequality for general diffusion equations. C. R. Acad. Sci. Paris, Sér. I 325 (1997), 963–968.
S. Holst, A. Jüngel, and P. Pietra. A mixed finite-element discretization of the energy-transport equations for semiconductors. SIAM J. Sci. Comput. 24 (2003), 2058–2075.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jüngel, A. (2009). Energy-Transport Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-89526-8_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89525-1
Online ISBN: 978-3-540-89526-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)