This and the following chapters are concerned with the formal derivation of semi-classical macroscopic transport models from the semiconductor Boltzmann equation. We start in this chapter with the derivation of drift-diffusion equations, which are the simplest semiconductor model in the hierarchy. It was first derived by van Roosbroeck in 1950 [1]. We derive the model using the moment method introduced in Chap. 2. A derivation using a simple collision operator was presented in Sect. 2.4. In this chapter, we will employ the low-density operator (4.22). The derivation was made rigorous by Poupaud [2].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
W. van Roosbroeck. Theory of flow of electron and holes in germanium and other semiconductors. Bell Syst. Techn. J. 29 (1950), 560–607.
F. Poupaud. Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers. Asympt. Anal. 4 (1991), 293–317.
P. Markowich, C. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, Vienna, 1990.
F. Golse and F. Poupaud. Limite fluide des \’equations de Boltzmann des semiconducteurs pour une statistique de Fermi–Dirac. Asympt. Anal. 6 (1992), 135–160.
E. Zeidler. Nonlinear Functional Analysis and Its Applications, Vol. II. Springer, New York, 1990.
N. Ben Abdallah and M. Tayeb. Diffusion approximation for the one dimensional Boltzmann–Poisson system. Discrete Contin. Dyn. Sys. B 4 (2004), 1129–1142.
N. Masmoudi and M. Tayeb. Diffusion limit of a semiconductor Boltzmann–Poisson system. SIAM J. Math. Anal. 38 (2007), 1788–1807.
F. Poupaud and C. Schmeiser. Charge transport in semiconductors with degeneracy effects. Math. Meth. Appl. Sci. 14 (1991), 301–318.
P. Markowich and C. Schmeiser. Relaxation time approximation for electron–phonon interaction in semiconductors. Math. Models Meth. Appl. Sci. 5 (1995), 519–527.
P. Markowich, F. Poupaud, and C. Schmeiser. Diffusion approximation of nonlinear electron phonon collision mechanisms. RAIRO Modél. Math. Anal. Numér. 29 (1995), 857–869.
N. Ben Abdallah and M. Tayeb. Diffusion approximation and homogenization of the semiconductor Boltzmann equation. SIAM Multiscale Model. Simul. 4 (2005), 896–914.
F. Poupaud and J. Soler. Parabolic limit and stability of the Vlasov-Fokker–Planck system. Math. Models Meth. Appl. Sci. 10 (2000), 1027–1045.
H. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electr. Devices ED-11 (1964), 455–465.
D. Scharfetter and H. Gummel. Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electr. Devices ED-16 (1969), 64–77.
F. Brezzi, L. Marini, and P. Pietra. Méthodes d’éléments finis mixtes et schéma de Scharfetter–Gummel. C. R. Acad. Sci. Paris, Sér. I 305 (1987), 599–604.
F. Brezzi, L. Marini, and P. Pietra. Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989), 1342–1355.
C. Chainais-Hillairet, J.-G. Liu, and Y.-J. Peng. Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Model. Numer. Anal. 37 (2003), 319–338.
R. Sacco and F. Saleri. Mixed finite volume methods for semiconductor device simulation. Numer. Meth. Part. Diff. Eqs. 13 (1997), 215–236.
M. Mock. On equations describing steady-state carrier distributions in a semiconductor device. Commun. Pure Appl. Math. 25 (1972), 781–792.
M. Mock. An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5 (1974), 597–612.
H. Gajewski and K. Gröger. On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113 (1986), 12–35.
H. Gajewski and K. Gröger. Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi–Dirac statistics. Math. Nachr. 140 (1989), 7–36.
K. Gröger and J. Rehberg. Uniqueness for the two-dimensional semiconductor equations in case of high carrier densities. Math. Z. 213 (1993), 523–530.
J. Jerome. Analysis of Charge Transport. A Mathematical Study of Semiconductor Devices. Springer, Berlin, 1996.
P. Markowich. The Stationary Semiconductor Device Equations. Springer, Vienna, 1986.
F. Brezzi, L. Marini, P. Markowich, and P. Pietra. On some numerical problems in semiconductor device simulation. In: G. Toscani, V. Boffi, and S. Rionero (eds.), Mathematical Aspects of Fluid and Plasma Dynamics (Salice Terme, 1988), Lecture Notes in Math. 1460, 31–42. Springer, Berlin, 1991.
F. Brezzi, L. Marini, S. Micheletti, P. Pietra, R. Sacco, and S. Wang. Discretization of semiconductor device problems. In: W. Schilders and E. ter Maten, Handbook of Numerical Analysis, Vol. 13: Numerical Methods in Electromagnetics, 317–441. North-Holland, Amsterdam, 2005.
J. Jerome. The approximation problem for drift-diffusion systems. SIAM Rev. 37 (1995), 552–572.
W. Hänsch. The Drift-Diffusion Equation and Its Applications in MOSFET Modeling. Springer, Vienna, 1991.
S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, Vienna, 1984.
A. Yamnahakki. Second order boundary conditions for the drift-diffusion equations of semiconductors. Math. Models Meth. Appl. Sci. 5 (1995), 429–455.
S. Taguchi and A. Jüngel. Kinetic theory of a two-surface problem of electron flow in a semiconductor. J. Stat. Phys. 130 (2007), 313–342.
K. Brennan. The Physics of Semiconductors. Cambridge University Press, Cambridge, 1999.
M. Grundmann. The Physics of Semiconductors. Springer, Berlin, 2006.
T. Goudon, V. Miljanovic, and C. Schmeiser. On the Shockley–Read–Hall model: generation–recombination in semiconductors. SIAM J. Appl. Math. 67 (2007), 1183–1201.
F. Poupaud. Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z. Angew. Math. Mech. 72 (1992), 359–372.
L. Arlotti and G. Frosali. Runaway particles for a Boltzmann-like transport equation. Math. Models Meth. Appl. Sci. 2 (1992), 203–221.
G. Frosali and C. Van der Mee. Scattering theory in the linear transport theory of particle swarms. J. Stat. Phys. 56 (1989), 139–148.
W. Hänsch and M. Miura-Mattausch. The hot-electron problem in small semiconductor devices. J. Appl. Phys. 60 (1986), 650–656.
P. Degond and A. Jüngel. High-field approximations of the energy-transport model for semiconductors with non-parabolic band structure. Z. Angew. Math. Phys. 52 (2001), 1053–1070.
E. Kan, U. Ravaioli, and T. Kerkhoven. Calculation of velocity overshoot in submicron devices using an augmented drift-diffusion model. Solid State Electr. 34 (1991), 995–999.
K. Thornber. Current equations for velocity overshoot. IEEE Electr. Device Letters 3 (1983), 6971.
N. Zakhleniuk. Nonequilibrium drift-diffusion transport in semiconductors in presence of strong inhomogeneous electric fields. Appl. Phys. Letters 89 (2006), 252112.
C. Cercignani, I. Gamba, and C. Levermore. High-field approximations to a Boltzmann–Poisson system and boundary conditions in a semiconductor. Appl. Math. Letters 10 (1997), no 4, 111–117.
C. Cercignani, I. Gamba, and C. Levermore. A drift-collision balance for a Boltzmann–Poisson system in bounded domains. SIAM J. Appl. Math. 61 (2001), 1932–1958.
T. Goudon, J. Nieto, F. Poupaud, and J. Soler. Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker–Planck system. J. Diff. Eqs. 213 (2005), 418–442.
J. Nieto, F. Poupaud, and J. Soler. High-field limit for the Vlasov-Poisson-Fokker–Planck system. Arch. Rat. Mech. Anal. 158 (2001), 29–59.
N. Ben Abdallah and H. Chaker. The high field asymptotics for degenerate semiconductors. Math. Models Meth. Appl. Sci. 11 (2001), 1253–1272.
N. Ben Abdallah, H. Chaker, and C. Schmeiser. The high field asymptotics for a fermionic Boltzmann equation: entropy solutions and kinetic shock profiles. J. Hyperb. Diff. Eqs. 4 (2007), 679–704.
V. Bonch-Bruevich and S. Kalashnikov. Halbleiterphysik. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
J. Viallet and S. Mottet. Transient simulation of heterostructure. In: J. Miller et al. (eds.), NASECODE IV Conference Proceedings. Dublin, Boole Press, 1985.
A. Jüngel. Asymptotic analysis of a semiconductor model based on Fermi–Dirac statistics. Math. Meth. Appl. Sci. 19 (1996), 401–424.
J. I. Díaz, G. Galiano, and A. Jüngel. On a quasilinear degenerate system arising in semiconductor theory. Part I: existence and uniqueness of solutions. Nonlin. Anal.: Real-World Appl. 2 (2001), 305–336.
A. Jüngel. On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Meth. Appl. Sci. 4 (1994), 677–703.
A. Jüngel. A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997), 85–110.
A. Jüngel. Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. Z. Angew. Math. Mech. 75 (1995), 783–799.
A. Jüngel and P. Pietra. A discretization scheme for a quasi-hydrodynamic semiconductor model. Math. Models Meth. Appl. Sci. 7 (1997), 935–955.
C. Chainais-Hillairet and F. Filbet. Asymptotic behavior of a finite volume scheme for the transient drift-diffusion model. IMA J. Numer. Anal. 27 (2007), 689–716.
C. Chainais-Hillairet and Y.-J. Peng. Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Math. Models Meth. Appl. Sci. 14 (2004), 461–481.
P. Guan and B. Wu. Existence of weak solutions to a degenerate time-dependent semiconductor equations with temperature effects. J. Math. Anal. Appl. 332 (2007), 367–380.
R. Courant and K. Friedrichs. Supersonic Flow and Shock Waves. Interscience, New York, 1967.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jüngel, A. (2009). Drift-Diffusion Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-89526-8_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89525-1
Online ISBN: 978-3-540-89526-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)