Skip to main content

Basic Semiconductor Physics

  • 2133 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 773)

In this chapter we present a short summary of the physics and main properties of semiconductors. We refer to [1–6] for introductory textbooks of solid-state and semiconductor physics and to [7–12] for more advanced expositions.

Keywords

  • Valence Band
  • Effective Mass
  • Brillouin Zone
  • Reciprocal Lattice
  • Gallium Arsenide

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89526-8_1
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-89526-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Hardcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adler, A. Smith, and R. Longini. Introduction to Semiconductor Physics. John Wiley & Sons, New York, 1964.

    Google Scholar 

  2. N. Ashcroft and N. Mermin. Solid State Physics. Sanners College, Philadelphia, 1976.

    Google Scholar 

  3. K. Brennan. The Physics of Semiconductors. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  4. J. Davies. The Physics of Low-Dimensional Semiconductors. Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  5. C. Kittel. Introduction to Solid State Physics. 7th edition, John Wiley & Sons, New York, 1996.

    Google Scholar 

  6. K. Seeger. Semiconductor Physics. An Introduction. Springer, Berlin, 2004.

    Google Scholar 

  7. H. Grahn. Introduction to Semiconductor Physics. World Scientific, Singapore, 1999.

    MATH  Google Scholar 

  8. J. Inkson. Many-Body Theory of Solids. Plenum Press, New York, 1984.

    Google Scholar 

  9. M. Lundstrom. Fundamentals of Carrier Transport. 2nd edition, Cambridge University Press, Cambridge, 2000.

    CrossRef  Google Scholar 

  10. D. Neamen. Semiconductor Physics and Devices. 3rd edition, McGraw Hill, New York, 2002.

    Google Scholar 

  11. U. Rössler. Solid State Theory. An Introduction. Springer, Berlin, 2004.

    Google Scholar 

  12. W. Wenckebach. Essentials of Semiconductor Physics. John Wiley & Sons, Chichester, 1999.

    Google Scholar 

  13. P. Yu and M. Cardona. Fundamentals of Semiconductors. Springer, Berlin, 2001.

    Google Scholar 

  14. P. Markowich, C. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, Vienna, 1990.

    MATH  Google Scholar 

  15. F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52 (1928), 555–600.

    ADS  Google Scholar 

  16. M. Reed and B. Simon. Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York, 1978.

    MATH  Google Scholar 

  17. C. Wilcox. Theory of Bloch waves. J. d’Analyse Math. 33 (1978), 146–167.

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. H. Ibach and H. Lüth. Solid-State Physics. Springer, Berlin, 1995.

    Google Scholar 

  19. D. Arnold. Functional Analysis. Lecture Notes, Penn State University, USA, 1997.

    Google Scholar 

  20. P. Degond. Mathematical modelling of microelectronics semiconductor devices. In: Some Current Topics on Nonlinear Conservation Laws, Studies Adv. Math. 15, 77–110. Amer. Math. Soc., Providence, 2000.

    Google Scholar 

  21. R. Kronig and W. Penney. Quantum mechanics of electrons in crystal lattices. Proc. Royal Soc. (London) A 130 (1931), 499–513.

    MATH  CrossRef  ADS  Google Scholar 

  22. K. Jackson and W. Schröter (eds.). Handbook of Semiconductor Technology, Vol. 1. Wiley-VCH, Weinheim, 2000.

    Google Scholar 

  23. M. Grundmann. The Physics of Semiconductors. Springer, Berlin, 2006.

    Google Scholar 

  24. P. Bechouche, N. Mauser, and F. Poupaud. Semiclassical limit for the Schrödinger-Poisson equation in a crystal. Commun. Pure Appl. Math. 54 (2001), 851–890.

    MATH  CrossRef  MathSciNet  Google Scholar 

  25. F. Poupaud and C. Ringhofer. Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Commun. Part. Diff. Eqs. 21 (1996), 1897–1918.

    MATH  CrossRef  MathSciNet  Google Scholar 

  26. P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamer. 9 (1993), 553–618.

    MATH  MathSciNet  Google Scholar 

  27. P. Markowich and N. Mauser. The classical limit of a self-consistent quantum-Vlasov equation in 3D. Math. Models Meth. Appl. Sci. 3 (1993), 109–124.

    MATH  CrossRef  MathSciNet  Google Scholar 

  28. G. Allaire and A. Piatnitski. Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys. 258 (2005), 1–22.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  29. P. Gérard. Mesures semi-classiques et ondes de Bloch. Séminaires sur les Equations aux Dérivées Partielles, 1990–1991, Exp. No. XVI, Ecole Polytechnique, Palaiseau, France, 1991.

    Google Scholar 

  30. P. Markowich, N. Mauser, and F. Poupaud. A Wigner-function approach to (semi) classical limits: electrons in a periodic potential. J. Math. Phys. 35 (1994), 1066–1094.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  31. G. Panati, H. Spohn, and S. Teufel. Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242 (2003), 547–578.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  32. F. Malcher, G. Lommer, and U. Rössler. Electron states in GaAs/Ga1-xAlxAs heterostructures: nonparabolicity and spin-splitting. Superlattices Microstruct. 2 (1986), 267–272.

    CrossRef  ADS  Google Scholar 

  33. N. Ben Abdallah and L. Barletti. Work in preparation, 2008.

    Google Scholar 

  34. M. Burt. The justification for applying the effective-mass approximation to microstructures. J. Phys.: Condens. Matter 4 (1992), 6651–6690.

    CrossRef  ADS  Google Scholar 

  35. W. Kohn and J. Luttinger. Theory of donor states in silicon. Phys. Rev. 98 (1955), 915–922.

    CrossRef  ADS  Google Scholar 

  36. H. Federer. Geometric Measure Theory. Springer, New York, 1969.

    MATH  Google Scholar 

  37. J. Blakemore. Semiconductor Statistics. Pergamon Press, Oxford, 1962.

    MATH  Google Scholar 

  38. V. Bonch-Bruevich and S. Kalashnikov. Halbleiterphysik. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.

    Google Scholar 

  39. M. Baro, H.-C. Kaiser, H. Neidhardt, and J. Rehberg. Dissipative Schrödinger-Poisson systems. J. Math. Phys. 45 (2004), 21–43.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  40. N. Ben Abdallah, P. Degond, and S. Génieys. An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84 (1996), 205–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Basic Semiconductor Physics. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)