Skip to main content

Quantum Drift-Diffusion Equations

  • 2006 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 773)

The main aim of this and the following chapters is to derive macroscopic quantum models from the parabolic band Wigner–Boltzmann equation (see Sect. 11.3), written in the crystal momentum\(p=\hbar k\),

$$ \partial_t w + \frac{p}{m^*}\cdot\nabla_x w + q\theta[V]w = Q(w), \quad x,p\in{\mathbb R}^3,\ t>0, \quad w(\cdot,\cdot,0)=w_I,$$
((12.1))

,

Keywords

  • Boltzmann Equation
  • Wigner Function
  • Moment Equation
  • Collision Operator
  • Resonant Tunneling Diode

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89526-8_12
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-89526-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Hardcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Degond and C. Ringhofer. Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112 (2003), 587–628.

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. P. Degond and C. Ringhofer. A note on quantum moment hydrodynamics and the entropy principle. C. R. Acad. Sci. Paris, Sér. I 335 (2002), 967–972.

    MATH  MathSciNet  Google Scholar 

  3. A. Jüngel, D. Matthes, and J.-P. Milišić. Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67 (2006), 46–68.

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. E. Wigner. On the quantum correction for the thermodynamic equilibrium. Phys. Rev. 40 (1932), 749–759.

    MATH  CrossRef  ADS  Google Scholar 

  5. P. Degond, F. Méhats, and C.Ringhofer. Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118 (2005), 625–665.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  6. M. Ancona. Diffusion-drift modeling of strong inversion layers. COMPEL 6 (1987), 11–18.

    Google Scholar 

  7. M. Ancona. Density-gradient analysis of field emission from metals. Phys. Rev. B 46 (1992), 4874–4883.

    CrossRef  ADS  Google Scholar 

  8. A. Asenov, S. Kaya, J. Davies, and S. Saini. Oxide thickness variation induced threshold voltage fluctuations in decanano MOSFET: a 3D density gradient simulation study. Superlatt. Microstruct. 28 (2000), 507–515.

    CrossRef  ADS  Google Scholar 

  9. H. Tsuchiya and T. Miyoshi. Quantum transport modeling of ultrasmall semiconductor devices. IEICE Trans. Electr. E82-C (1999), 880–888.

    Google Scholar 

  10. A. Wettstein, A. Schenk, and W. Fichtner. Quantum device-simulation with the density-gradient model on unstructured grids. IEEE Trans. Electr. Devices 48 (2001), 279–284.

    CrossRef  ADS  Google Scholar 

  11. A. El Ayyadi and A. Jüngel. Semiconductor simulations using a coupled quantum drift-diffusion Schrödinger-Poisson model. SIAM J. Appl. Math. 66 (2005), 554–572.

    Google Scholar 

  12. C. de Falco, E. Gatti, A. Lacaita, and R. Sacco. Quantum-corrected drift-diffusion model for transport in semiconductor devices. J. Comput. Phys. 204 (2005), 533–561.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  13. A. Jüngel and R. Pinnau. A positivity-preserving numerical scheme for a nonlinear fourth order parabolic equation. SIAM J. Numer. Anal. 39 (2001), 385–406.

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. N. Ben Abdallah and A. Unterreiter. On the stationary quantum drift diffusion model. Z. Angew. Math. Phys. 49 (1998), 251–275.

    Google Scholar 

  15. M. Ancona, Z. Yu, W.-C. Lee, R. Dutton, and P. Voorde. Density-gradient simulations of quantum effects in ultra-thin-oxide MOS structures. SISPAD ’97 (1997), 97–100.

    Google Scholar 

  16. A. Jüngel and J.-P. Milišić. Macroscopic quantum models with and without collisions. Bulletin Inst. Math. Acad. Sinica (New Series) 2 (2007), 251–279.

    MATH  Google Scholar 

  17. S. Micheletti, R. Sacco, and P. Simioni. Numerical simulation of resonant tunneling diodes with a quantum drift-diffusion model. In: W. Schilders, E. ten Maten, and S. Houben (eds.), Scientific Computing in Electrical Engineering, 313–321. Springer, 2004.

    Google Scholar 

  18. J. Watling, A. Brown, and A. Asenov. Can the density gradient approach describe the source-drain tunnelling in decanano double-gate MOSFETs? J. Comput. Electr. 1 (2002), 289–293.

    CrossRef  Google Scholar 

  19. B. Derrida, J. Lebowitz, E. Speer, and H. Spohn. Fluctuations of a stationary nonequilibrium interface. Phys. Rev. Letters 67 (1991), 165–168.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  20. A. Jüngel and D. Matthes. A review on results for the Derrida-Lebowitz-Speer-Spohn equation. To appear in Proceedings of Equadiff 2007, 2009.

    Google Scholar 

  21. P. Bleher, J. Lebowitz, and E. Speer. Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Commun. Pure Appl. Math. 47 (1994), 923–942.

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. A. Jüngel and R. Pinnau. Global non-negative solutions of a nonlinear fourth-order parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000), 760–777.

    MATH  CrossRef  MathSciNet  Google Scholar 

  23. U. Gianazza, G. Savaré, and G. Toscani. The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. To appear in Arch. Rat. Mech. Anal., 2009.

    Google Scholar 

  24. A. Jüngel and D. Matthes. The Derrida-Lebowitz-Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39 (2008), 1996–2015.

    MATH  CrossRef  MathSciNet  Google Scholar 

  25. A. Jüngel and I. Violet. The quasineutral limit in the quantum drift-diffusion equations. Asympt. Anal. 53 (2007), 139–157.

    MATH  Google Scholar 

  26. L. Chen and Q. Ju. Existence of weak solution and semiclassical limit for quantum drift-diffusion model. Z. Angew. Math. Phys. 58 (2007), 1–15.

    MATH  CrossRef  MathSciNet  Google Scholar 

  27. R. Pinnau. Uniform convergence of the exponentially fitted scheme for the quantum drift-diffusion model. SIAM J. Numer. Anal. 42 (2004), 1648–1668.

    MATH  CrossRef  MathSciNet  Google Scholar 

  28. R. Pinnau and J. M. Ruiz. Convergent finite element discretizations of the density gradient equation for quantum semiconductors. To appear in Proceedings of SIMAI 2006, 2009.

    Google Scholar 

  29. R. Pinnau and A. Unterreiter. The stationary current-voltage characteristics of the quantum drift-diffusion model. SIAM J. Numer. Anal. 37 (1999), 211–245.

    MATH  CrossRef  MathSciNet  Google Scholar 

  30. S. Odanaka. Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures. IEEE Trans. Comp. Aided Design Integr. Circuits Sys. 23 (2004), 837–842.

    CrossRef  Google Scholar 

  31. S. Odanaka. A high-resolution method for quantum confinement transport simulations in MOSFETs. EEE Trans. Comp. Aided Design Integr. Circuits Sys. 26 (2007), 80–85.

    CrossRef  Google Scholar 

  32. A. Unterreiter and S. Volkwein. Optimal control of the stationary quantum drift-diffusion model. Commun. Math. Sci. 5 (2007), 85–111.

    MathSciNet  Google Scholar 

  33. P. Degond, S. Gallego, and F. Méhats. An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes. J. Comput. Phys. 221 (2007), 226–249.

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  34. P. Degond, S. Gallego, F. Méhats, and C. Ringhofer. Quantum hydrodynamic and diffusion models derived from the entropy principle. Lecture notes for a summer school in Cetraro, Italy, 2006.

    Google Scholar 

  35. A. Pirovano, A. Lacaita, and A. Spinelli. Two-dimensional quantum effects in nanoscale MOSFETs. IEEE Trans. Electron Devices 47 (2002), 25–31.

    CrossRef  ADS  Google Scholar 

  36. S. Gallego and F. Méhats. Entropic discretization of a quantum drift-diffusion model. SIAM J. Numer. Anal. 43 (2005), 1828–1849.

    MATH  CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Quantum Drift-Diffusion Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)