Small-World Peer-to-Peer for Resource Discovery

  • Lu Liu
  • Nick Antonopoulos
  • Stephen Mackin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5200)


Small-world phenomenon is potentially useful to improve the performance of resource discovery in decentralized peer-to-peer (P2P) networks. The theory of small-world networks can be adopted in the design of P2P networks: each peer node is connected to some neighbouring nodes, and a group of peer nodes keep a small number of long links to randomly chosen distant peer nodes. However, current unstructured search algorithms have difficulty distinguishing among these random long-range shortcuts and efficiently finding a set of proper long-range links located in itself or its local group for a specific resource search. This paper presents a semi-structured P2P model to efficiently create and find long-range shortcuts toward remote peer groups.


Peer-to-peer Small World Information Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonopoulos, N., Salter, J.: Efficient Resource Discovery in Grids and P2P Networks. Internet Research 14(5), 339–346 (2004)CrossRefGoogle Scholar
  2. 2.
    Yang, B., Garcia-Molina, H.: Efficient Search in Peer-to-Peer networks. In: Proc. of International Conference on Distributed Computing Systems, Vienna, Austria (2002)Google Scholar
  3. 3.
    Rhea, S., Gells, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In: Proc. the USENIX Annual Technical Conference, Boston, MA, USA (2004)Google Scholar
  4. 4.
    Maymounkov, P., Mazieres, D.: Kademlia: A Peer-to-Peer information system based on the XOR Metric. In: Proc. of International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, MA, USA (2002)Google Scholar
  5. 5.
    Castro, D., Costa, M., Rowstron, A.: Debunking some myths about structured and unstructured overlays. In: Proc. of the Symposium on Networked Systems Design and Implementation, Boston, MA, USA (2005)Google Scholar
  6. 6.
    Milgram, S.: The Small World Problem. Psychology Today, 60–67 (1967)Google Scholar
  7. 7.
    Hong, T.: Chapter Fourteen: Performance, Peer-to-Peer: Harnessing the Power of Disruptive Technologies, pp. 203–241. O’Reilly, Sebastopol (2001)Google Scholar
  8. 8.
    Watts, D., Strogatz, S.: Collective Dynamics of Small-World Networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  9. 9.
    Kleinberg, J.: Navigation in a Small World. Nature 406, 845 (2000)CrossRefGoogle Scholar
  10. 10.
    Iamnitchi, A., Ripeanu, M., Foster, I.: Locating Data in Peer-to-Peer Scientific Collaborations. In: Proc. of International Workshop on Peer-to-Peer Systems, Berkeley, MA, USA (2002)Google Scholar
  11. 11.
    Cuenca-acuna, F.M., et al.: PlanetP: Using Gossiping to Build Content Addressable Peer-to-Peer information Sharing Communities. In: Proc. of High Performance Distributed Computing, Seattle, Washington, USA (2003)Google Scholar
  12. 12.
    Hui, K.Y.K., et al.: Small World Overlay P2P Networks. In: Proc. of International Workshop on Quality of Service, Montreal, Canada (2004)Google Scholar
  13. 13.
    Triantafillou, P.: PLANES: The Next Step in Peer-to-Peer Network Architectures. In: Proc. of Workshop on Future Directions in Network Architectures Karlsruhe, Germany (2003)Google Scholar
  14. 14.
    Antonopoulos, N., Salter, J.: Improving Query Routing Efficiency in Peer-to-Peer Networks, University of Surrey Computing Sciences Report, CS-04-01 (2004)Google Scholar
  15. 15.
    Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. In: Proc. of Advances in Neural Information Processing Systems, Vancouver, Canada (2001)Google Scholar
  16. 16.
    Zhang, H., Goel, A., Govindan, R.: Using the Small-World Model to Improve Freenet Performance. Computer Networks 46(4), 555–574 (2004)CrossRefGoogle Scholar
  17. 17.
    Li, M., Lee, W., Sivasubramaniam, A.: Semantic Small World: An Overlay Network for Peer-to-Peer Search. In: Proc. of the International Conference on Network Protocols, Berlin, Germany (2004)Google Scholar
  18. 18.
    Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The Case for a Hybrid P2P Search Infrastructure. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 141–150. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Traversat, B., Abdelaziz, M., Pouyoul, E.: Project JXTA: A Loosely-Consistent DHT Rendezvous Walker, Technical Report, Sun Microsystems, Inc. (2003)Google Scholar
  20. 20.
    Cuenca-Acuna, F.M., Nguyen, T.D.: Text-based Content Search and Retrieval in ad hoc P2P Communities. In: Gregori, E., Cherkasova, L., Cugola, G., Panzieri, F., Picco, G.P. (eds.) NETWORKING 2002. LNCS, vol. 2376, pp. 220–234. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Khambatti, M., Ryu, K.D., Dasgupta, P.: Structuring Peer-to-Peer Networks using Interest-Based Communities. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2003. LNCS, vol. 2944, pp. 48–63. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Vassileva, J.: Motivating Participation in Peer-to-Peer Communities. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS, vol. 2577, pp. 18–23. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Bloom, B.: Space/time Trade-offs in Hash Coding with Allowable Errors. Communication of ACM 13(7), 422–426 (1970)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lu Liu
    • 1
  • Nick Antonopoulos
    • 2
  • Stephen Mackin
    • 3
  1. 1.Surrey Space CentreUniversity of SurreySurreyU.K.
  2. 2.Computing DepartmentUniversity of SurreySurreyU.K.
  3. 3.Surrey Satellite Technology LimitedSurrey Research ParkSurreyU.K.

Personalised recommendations