Skip to main content

ECG Processing for Exercise Test

  • Chapter
  • First Online:
Advanced Biosignal Processing

Abstract

The specificity of processing the ECG signal recorded during an exercise test is analysed. After introducing the interest of such an experiment to catch physiological information, the acquisition protocol is first described. Then new results on heart rate variability estimation, using parametric and non parametric models are given, showing in the time-frequency plane the evolutions of cardiac and respiratory frequencies, together with the pedalling one. Methods for the estimation of PR intervals, when T and P waves are overlapped, are then described, which leads to the enhancement of hysteresis phenomenon for this signal during the phases of exercise and recovery. Finally, the modelling and estimation of shape changes along the test is developed with an application to P waves. The shape changes are modelled by simulation as changes in the relative propagations in the both auricles. In addition, alternatives to the classical signal averaging technique, including signal shape analysis, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger R, Saul P, Cohen R J (1989) Assessment of autonomic response by broad-band respiration. IEEE Trans Biomed Eng 36(11):1061–1065

    Article  Google Scholar 

  2. Blain G, Meste O, Bermon S (2005) Influences of breathing patterns on respiratory sinus arrhythmia in humans during exercise. Am J Physiol 288:H887–H895

    Google Scholar 

  3. Malmivuo J, Plonsey R (1995) Bioelectromagnetism. Oxford University Press, New York

    Google Scholar 

  4. Mason R, Likar L (1966) A new system of multiple leads exercise electrocardiography. Am Heart J 71(2):196–205

    Article  Google Scholar 

  5. Pomeranz B, Macaulay R J B, Caudill M A et al. (1985) Assessment of autonomic function in man by heart rate analysis. Am J Physiol 248:H151–H153

    Google Scholar 

  6. Akselrod S, Gordon D, Ubel F A, Shannon D C, Berger A C, Cohen R J (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  Google Scholar 

  7. Bernardi L, Salvucci F, Suardi R, Solda P L, Calciati A, Perlini S, Falcone C, Ricciardi L (1990) Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise. Cardiovasc Res 24:969–981

    Article  Google Scholar 

  8. Warner M R, DeTarnowsky J M, Whitson C C, Loeb J M (1986) Beat-by-beat modulation of AV conduction. II. Autonomic neural mechanisms. Am J Physiol 251:H1134–H1142

    Google Scholar 

  9. Bianchi A, Mainardi L T, Petrucci E, Signorini M, Mainardi M, Cerutti S (1993) Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE Trans Biomed Eng 40(2):136–144

    Article  Google Scholar 

  10. Keselbrener L, Akselrod S (1996) Selective discrete fourier transform algorithm for time-frequency analysis: method and application on simulated and cardiovascular signals. IEEE Trans Biomed Eng 43(8):789–802

    Article  Google Scholar 

  11. Toledo E, Gurevitz O, Hod H, Eldar M, Akselrod S (2003) Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis. Am J Physiol Regul Integr Comp Physiol 284(4):R1079–R1091

    Google Scholar 

  12. Mainardi L T, Montano N, Cerutti S (2004) Automatic decomposition of wigner distribution and its application to heart rate variability. Methods Inf Med 43:17–21

    Google Scholar 

  13. Meste O, Khaddoumi B, Blain G, Bermon S (2005) Time-varying analysis methods and models for the respiratory and cardiac system coupling in graded exercise. IEEE Trans Biomed Eng 52(11):1921–1930

    Article  Google Scholar 

  14. Blain G, Meste O, Bermon S (2005) Assessment of ventilatory threshold during graded and maximal exercise test using time-varying analysis of respiratory arrhythmia. Br J Sports Med 39:448–452

    Article  Google Scholar 

  15. Bailon R, Mainardi L T, Laguna P (2006) Time-frequency analysis of heart rate variability during stress testing using a priori information of respiratory frequency. Proc Comput Cardiol 33:169-172

    Google Scholar 

  16. Bailon R, Sörnmo L, Laguna P (2006) A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE Trans Biomed Eng 53(7):1273–1285

    Article  Google Scholar 

  17. Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications. Elsevier Academic Press, New York

    Google Scholar 

  18. Mateo J, Laguna P (2000) Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model. IEEE Trans Biomed Eng 47(8):985–996

    Article  Google Scholar 

  19. Brennan M, Malaniswami M, Kamen P (2001) Distortion properties of the interval spectrum of IPFM generated heart beats for the heart rate variability analysis. IEEE Trans Biomed Eng 48(11):1251–1264

    Article  Google Scholar 

  20. Meste O, Blain G, Bermon S (2007) Influence of the pedalling frequency on the Heart Rate Variability. Proceedings of the 29th Annual International Conference of the IEEE EMBS 279–282

    Google Scholar 

  21. Shouldice R, Heneghan C, Nolan P, Nolan P G, McNicholas W (2002) Modulating effect of respiration on atrioventricular conduction time assessed using PR interval variation. Med Biol Eng Comput 40:609–617

    Article  Google Scholar 

  22. Kay S M (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  23. Woody C D (1967) Characterization of an adaptative filter for the analysis of variable latency neuroelectric signals. Med Biol Eng Comput 5:539–553

    Article  Google Scholar 

  24. Cabasson A, Meste O (2008) Time delay estimation: a new insight into the Woody’s method. IEEE Signal Processing Letters 15:1001–1004

    Article  Google Scholar 

  25. Cabasson A, Meste O, Blain G, Bermon S (2006) Optimality statement of the woody’s method and improvement. Research Report ISRN I3S/RR-2006-28-FR: http://www.i3s.unice.fr/%7Emh/RR/2006/liste-2006.html

  26. McSharry P, Clifford G, Tarassenko L, Smith L (2003) A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng 50:289–294

    Article  Google Scholar 

  27. Cabasson A, Meste O (2008) A time delay estimation technique for overlapping signals in electrocardiograms. Proceedings of the 16th European Signal Processing Conference

    Google Scholar 

  28. Lawson C L, Hanson R J (1974) Solving least squares problems. Prentice Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  29. Meste O, Blain G, Bermon S (2004) Hysteresis analysis of the PR-PP relation under exercise conditions. Proc Comput Cardiol 31:461--464

    Google Scholar 

  30. Klabunde R E (2005) Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Philadelphia, PA USA

    Google Scholar 

  31. Langley P, Di Bernardo D, Murray A (2002) Quantification of T wave shape changes following exercise. Pacing Clin Electrophysiol 25(8):1230–1234

    Article  Google Scholar 

  32. Zhang Q, Illanes Manriquez A, Medigue C, Papelier Y, Sorine M (2005) Robust and efficient location of T-wave ends in electrocardiogram. Proc Comput Cardiol 32:711--714

    Google Scholar 

  33. Boudaoud S, Meste O, Rix H, (2004) Curve registration for study of P-wave morphing during exercise. Comput Cardiol 31:433–436

    Google Scholar 

  34. Ramsay J O, Silverman B W (1997) Functional data analysis. Springer series in Statistics, New-York

    Book  MATH  Google Scholar 

  35. Gervini D, Gasser T (2004) Self-modelling warping functions. J R Stat Soc 66(4):959–971

    Article  MathSciNet  MATH  Google Scholar 

  36. Rix H, Meste O, Muhammad W (2004) Averaging Ssignals with random time shift and time scale fluctuations. Methods Inf Med 43:13–16

    Google Scholar 

  37. Boudaoud S, Rix H, Meste O (2005) Integral shape averaging and structural average estimation: a comparative study. IEEE Trans Signal Process 53:3644–3650

    Article  MathSciNet  Google Scholar 

  38. Boudaoud S, Rix H, Meste O, Heneghan C, O’Brien C (2007) Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram. EURASIP J Adv Signal Process, doi:10.1155/2007/32570

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meste, O., Rix, H., Blain, G. (2009). ECG Processing for Exercise Test. In: Naït-Ali, A. (eds) Advanced Biosignal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89506-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89506-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89505-3

  • Online ISBN: 978-3-540-89506-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics