Skip to main content

Natural Form Modeling

  • Chapter
Book cover Digital Human Modeling

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4650))

  • 1019 Accesses

Abstract

Most engineering software has been designed and optimized for parametric shapes. Sophisticated modeling of natural objects is free-form based, reflecting their inherent design. The merging of natural with parametric-based forms presents additional challenges. While work is needed, there are solutions that enable natural form modeling and analysis. Our focus is to use medical imaging and 3D modeling to analyze the natural form of human joint structure with specific application to joint replacement. The need for natural form modeling is also present in such other fields as varied as art, archeology and paleontology. In this chapter we illustrate examples of the breadth and power of natural form modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robertson, D., Yamaguchi, K., Bigliani, L., Flatow, E.: Three dimensional analysis of the proximal humerus: relevance to arthroplasty. J Bone Joint Surg. 82-A, 1594–1602 (2000)

    Article  Google Scholar 

  2. Robertson, D., Britton, C., Latona, C., Armfield, D.P.W., Maloney, W.: Hip biomechanics: importance to functional imaging. Semin Musculoskelet Rad. 7(1), 27–42 (2003)

    Article  Google Scholar 

  3. Sharma, G., Robertson, D., Rodosky, M., McMahon, P.: Glenoid Structural Analyses: Relevance to Arthroplasty. In: Orthopaedic Research Society, Chicago, IL (2006)

    Google Scholar 

  4. Bimber, O., Gatesy, S.M., Witmer, L.M., Raskar, R., Encarnacao, L.: Merging fossil specimens with computer-generated information. Computer, 25–30 September (2002)

    Google Scholar 

  5. Delalieux, H., Tsuji, K., Wagatsuma, K., Van Grieken, R.: Material analysis methods applied to the study of ancient monuments, works of art and artefacts. Mater Trans. 43, 2197–2200 (2002)

    Article  Google Scholar 

  6. Leitao, H.C.d.G.: Digitization and reconstruction of archaeological artifacts. IEEE 2001, 382 (2001)

    Google Scholar 

  7. Weber, G.W., Schafer, K., Prossinger, H., Gunz, P., Mitterocker, P., Seidler, H.: Virtual anthropology: the digital evolution in anthropological sciences. J. Physiol. Anthropol. Appl. Human Sci. 20, 69–80 (2001)

    Article  Google Scholar 

  8. Cesarani, F., Martina, M.C., Ferraris, A., Grilletto, R., Boano, R., Marochetti, E.F., et al.: Whole-body three-dimensional multidetector CT of 13 Egyptian human mummies. AJR Am. J. Roentgenol. 180, 597–606 (2003)

    Article  Google Scholar 

  9. Martin, R.B.: Porosity and specific surface of bone. Crit. Rev. Biomed. Eng. 10, 179–222 (1984)

    Google Scholar 

  10. Boileau, P., Sinnerton, R.J., Chuinard, C., Walch, G.: Arthroplasty of the shoulder. J. Bone Joint Surg. Br. 88, 562–575 (2006)

    Article  Google Scholar 

  11. Skirving, A.P.: Total shoulder arthroplasty – current problems and possible solutions. J. Orthop. Sci. 4, 42–53 (1999)

    Article  Google Scholar 

  12. Torchia, M.E., Cofield, R.H., Settergren, C.R.: Total shoulder arthroplasty with the Neer prosthesis: long-term results. J. Shoulder Elbow Surg. 6, 495–505 (1997)

    Article  Google Scholar 

  13. Beaupre, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling–theoretical development. J. Orthop. Res. 8, 651–661 (1990)

    Article  Google Scholar 

  14. Jacobs, C.R., Levenston, M.E., Beaupre, G.S., Simo, J.C., Carter, D.R.: Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach. J. Biomech. 28, 449–459 (1995)

    Article  Google Scholar 

  15. Weinans, H., Huiskes, R., van Rietbergen, B., Sumner, D.R., Turner, T.M., Galante, J.O.: Adaptive bone remodeling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation. J. Orthop. Res. 11, 500–513 (1993)

    Article  Google Scholar 

  16. Sharma, G., Robertson, D., Smolinski, P., Gilbertson, L., Debski, R., McMahon, P.: Glenoid Bone Remodeling: Numerical Simultion and Validation. In: Orthopaedic Research Society, San Diego, CA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robertson, D.D., Sharma, G.B. (2008). Natural Form Modeling. In: Cai, Y. (eds) Digital Human Modeling. Lecture Notes in Computer Science(), vol 4650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89430-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89430-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89429-2

  • Online ISBN: 978-3-540-89430-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics