Advertisement

Visual Homing in Insects and Robots

  • Jochen ZeilEmail author
  • Norbert Boeddeker
  • Wolfgang Stürzl
Chapter

Abstract

Insects use memorised visual representations to find their way back to places of interest, like food sources and nests. They acquire these visual memories during systematic learning flights or walks on their first departure and update them whenever approaches to the goal have been difficult. The fact that small insects are so good at localisation tasks with apparent ease has attracted the attention of engineers interested in developing and testing methods for visual navigation on mobile robots. We briefly review here (1) homing in insects; (2) what is known about the content of insect visual memories; (3) recent robotics advances in view-based homing; (4) conditions for view-based homing in natural environments and (5) issues concerning the acquisition of visual representations for homing.

Keywords

Mobile Robot Visual Representation Extended Kalman Filter Homing Agent Salient Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baddeley, B., Philippides, A.: Improving agent localisation through stereotypical motion. In: F.A. de Costa, L.M. Rocha, E. Costa, I. Harvey, A. Coutinho (eds.) 9th European Conference on Artificial Life, LNAI, vol. 4648, pp. 335–344 (2007)Google Scholar
  2. 2.
    Becker, L.: Untersuchungen über das Heimfindevermögen der Bienen. Zeitschrift für Vergleichende Physiologie 41, 1–25 (1958)Google Scholar
  3. 3.
    Booij, O., Terwijn, B., Zivkovic, Z., Kröse, B.: Navigation using an appearance based topological map. In: S. Hutchinson (ed.) IEEE International Conference on Robotics and Automation, pp. 3927–3932 (2007)Google Scholar
  4. 4.
    Brünnert, U., Kelber, A., Zeil, J.: Ground-nesting bees determine the location of their nest relative to a landmark by other than angular size cues. Journal of Comparative Physiology A 175, 363–369 (1994)CrossRefGoogle Scholar
  5. 5.
    Burschka, D., Hager, G.: V-GPS (SLAM): Vision-based inertial system for mobile robots. In: M. Meng (ed.) IEEE International Conference on Robotics and Automation, vol. 1, pp. 409–415 (2004)Google Scholar
  6. 6.
    Capaldi, E., Dyer, F.: The role of orientation flights on homing performance in honeybees. Journal of Experimental Biology 202, 1655–1666 (1999)Google Scholar
  7. 7.
    Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahrbach, S.E., Farris, S.M., Reynolds, D.R., Edwards, A.S., Martin, A., Robinson, G.E., Poppy, G.M., Riley, J.R.: Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403, 537–40 (2000)CrossRefGoogle Scholar
  8. 8.
    Cartwright, B.A., Collett, T.S.: How honey-bees know their distance from a near-by visual landmark. Journal of Experimental Biology 82, 367–372 (1979)Google Scholar
  9. 9.
    Cartwright, B.A., Collett, T.S.: Landmark learning in bees. Journal of Comparative Physiology A 151, 521–543 (1983)CrossRefGoogle Scholar
  10. 10.
    Cartwright, B.A., Collett, T.S.: Landmark maps for honeybees. Biological Cybernetics 57, 85–93 (1987)CrossRefGoogle Scholar
  11. 11.
    Cheng, K., Collett, T.S., Pickhard, A., Wehner, R.: The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal. Journal of Comparative Physiology A 161, 469–475 (1987)CrossRefGoogle Scholar
  12. 12.
    Cheng, K., Collett, T.S., Wehner, R.: Honeybees learn the colours of landmarks. Journal of Comparative Physiology A 159, 69–73 (1986)CrossRefGoogle Scholar
  13. 13.
    Collett, T.S.: Making learning easy: the acquisition of visual information during the orientation flights of social wasps. Journal of Comparative Physiology A 177, 737–747 (1995)Google Scholar
  14. 14.
    Collett, T.S.: Insect navigation en route to the goal: multiple strategies for the use of landmarks. Journal of Experimental Biology 199, 227–235 (1996)CrossRefGoogle Scholar
  15. 15.
    Collett, T.S., Graham, P., Harris, R.A., de Ibarra, N.H.: Navigational memories in ants and bees: Memory retrieval when selecting and following routes. Advances in the Study of Behavior 36, 123–172 (2006)CrossRefGoogle Scholar
  16. 16.
    Collett, T.S., Land, M.F.: Visual spatial memory in a hoverfly. Journal of Comparative Physiology A 100, 59–84 (1975)CrossRefGoogle Scholar
  17. 17.
    Collett, T.S., Lehrer, M.: Looking and learning: A spatial pattern in the orientation flight of the wasp Vespula vulgaris. Proceedings of the Royal Society London B 252, 129–134 (1993)CrossRefGoogle Scholar
  18. 18.
    Collett, T.S., Zeil, J.: Places and landmarks: An arthropod perspective. In: S. Healy (ed.) Spatial representation in animals, pp. 18–53. Oxford University Press (1998)Google Scholar
  19. 19.
    Dale, K., Collett, T.S.: Using artificial evolution and selection to model insect navigation. Current Biology 11, 1305–1316 (2001)CrossRefGoogle Scholar
  20. 20.
    Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 865–880 (2002)CrossRefGoogle Scholar
  21. 21.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. Pattern Analysis and Machine Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1052–1067 (2007)CrossRefGoogle Scholar
  22. 22.
    Dyer, A.G., Rosa, M.G.P., Reser, D.H.: Honeybees can recognise images of complex natural scenes for use as potential landmarks. Journal of Experimental Biology 211, 1180–1186 (2008)CrossRefGoogle Scholar
  23. 23.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5, 111–125 (1998)CrossRefGoogle Scholar
  24. 24.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics 79, 191–202 (1998)zbMATHCrossRefGoogle Scholar
  25. 25.
    Frier, H., Edwards, E., Smith, C., Neale, S., Collett, T.: Magnetic compass cues and visual pattern learning in honeybees. Journal of Experimental Biology 199, 1353–1361 (1996)Google Scholar
  26. 26.
    Gillner, S., Mallot, H.A.: These maps are made for walking task hierarchy of spatial cognition. In: M. Jefferies, W.K. Yeap (eds.) Robotics and Cognitive Approaches to Spatial Mapping (Springer Tracts in Advanced Robotics), pp. 181–201. Springer (2008)Google Scholar
  27. 27.
    Goedemé, T., Nuttin, M., Tuytelaars, T., Gool, L.V.: Omnidirectional vision based topological navigation. International Journal of Computer Vision 74, 219–236 (2007)CrossRefGoogle Scholar
  28. 28.
    Graham, P., Fauria, K., Collett, T.S.: The influence of beacon-aiming on the routes of wood ants. Journal of Experimental Biology 206, 535–541 (2003)CrossRefGoogle Scholar
  29. 29.
    Haralick, B.M., Lee, C.N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. International Journal of Computer Vision 13, 331–356 (1994)CrossRefGoogle Scholar
  30. 30.
    van Hateren, J.H., Srinivasan, M.V., Wait, P.B.: Pattern recognition in bees: orientation discrimination. Journal of Comparative Physiology A 167, 649–654 (1990)CrossRefGoogle Scholar
  31. 31.
    Homberg, U.: In search of the sky compass in the insect brain. Naturwissenschaften 91, 199–208 (2004)CrossRefGoogle Scholar
  32. 32.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4, 629 (1987)CrossRefGoogle Scholar
  33. 33.
    Horridge, A.: Visual processing of pattern. In: E. Warrant, D.E. Nilsson (eds.) Invertebrate Vision, pp. 494–525. Cambridge University Press (2006)Google Scholar
  34. 34.
    Hübner, W., Mallot, H.A.: Metric embedding of view-graphs. Autonomous Robots 23, 183–196 (2007)CrossRefGoogle Scholar
  35. 35.
    van Iersel, J.J.A., van den Assem, J.: Aspects of orientation in the digger wasp Bembix rostrata. Animal Behaviour Suppl 1, 145–162 (1964)Google Scholar
  36. 36.
    Judd, S.P.D., Collett, T.S.: Multiple stored views and landmark guidance in ants. Nature 392, 710–714 (1998)CrossRefGoogle Scholar
  37. 37.
    Kelber, A.: Invertebrate colour vision. In: E. Warrant, D.E. Nilsson (eds.) Invertebrate Vision, pp. 250–290. Cambridge University Press (2006)Google Scholar
  38. 38.
    Kelber, A., Zeil, J.: A robust procedure for visual stabilisation of hovering flight position in guard bees of Trigona (Tetragonisca) angustula (Apidae, Meliponinae). Journal of Comparative Physiology A 167, 569–577 (1990)CrossRefGoogle Scholar
  39. 39.
    Kelber, A., Zeil, J.: Tetragonisca guard bees interpret expanding and contracting patterns as unintended displacement in space. Journal of Comparative Physiology A 181, 257–265 (1997)CrossRefGoogle Scholar
  40. 40.
    Kral, K.: Behavioural-analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behavioural Processes 64, 1–12 (2003)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Labrosse, F.: Short and long-range visual navigation using warped panoramic images. Robotics and Autonomous Systems 55, 675–684 (2007)CrossRefGoogle Scholar
  42. 42.
    Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30, 39–64 (2000)CrossRefGoogle Scholar
  43. 43.
    Lehrer, M.: Why do bees turn back and look? Journal of Comparative Physiology A 172, 549–563 (1993)CrossRefGoogle Scholar
  44. 44.
    Lehrer, M., Bianco, G.: The turn-back-and-look behaviour: bee versus robot. Biological Cybernetics 83, 211–229 (2000)CrossRefGoogle Scholar
  45. 45.
    Lehrer, M., Collett, T.S.: Approaching and departing bees learn different cues to the distance of a landmark. Journal of Comparative Physiology A 175, 171–177 (1994)CrossRefGoogle Scholar
  46. 46.
    Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L.: Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006)CrossRefGoogle Scholar
  47. 47.
    Möller, R.: Insect visual homing strategies in a robot with analog processing. Biological Cybernetics 83, 231–243 (2000)zbMATHCrossRefGoogle Scholar
  48. 48.
    Möller, R.: Do insects use templates or parameters for landmark navigation? Journal of Theoretical Biology 210, 33–45 (2001)CrossRefGoogle Scholar
  49. 49.
    Möller, R.: Insects could exploit UV-green contrast for landmark navigation. Journal of Theoretical Biology 214, 619–631 (2002)CrossRefGoogle Scholar
  50. 50.
    Möller, R.: Local visual homing by warping of two-dimensional images. Robotics and Autonomous Systems 57, 87–101 (2009)Google Scholar
  51. 51.
    Möller, R., Vardy, A.: Local visual homing by matched-filter descent in image distances. Biological Cybernetics 95, 413–430 (2006)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Nicholson, D.J., Judd, S.P., Cartwright, B.A., Collett, T.S.: Learning walks and landmark guidance in wood ants (Formica rufa). Journal of Experimental Biology 202, 1831–1838 (1999)Google Scholar
  53. 53.
    Opfinger, E.: Über die Orientierung der Biene an der Futterquelle. Zeitschrift für Vergleichende Physiologie 15, 431–487 (1931)CrossRefGoogle Scholar
  54. 54.
    Peters, R., Hemmi, J., Zeil, J.: Image motion environments: background noise for movement-based animal signals. Journal of Comparative Physiology A 194, 441–456 (2008)CrossRefGoogle Scholar
  55. 55.
    Se, S., Lowe, D.G., Little, J.J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. International Journal of Robotics Research 21, 735–758 (2002)CrossRefGoogle Scholar
  56. 56.
    Se, S., Lowe, D.G., Little, J.J.: Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics 21, 364–375 (2005)CrossRefGoogle Scholar
  57. 57.
    Sobel, E.C.: The locust’s use of motion parallax to measure distance. Journal of Comparative Physiology A 167, 579–588 (1990)CrossRefGoogle Scholar
  58. 58.
    Srinivasan, M.V., Lehrer, M., Horridge, G.A.: Visual figure-ground discrimination in the honeybee: The role of motion parallax at boundaries. Proceedings of the Royal Society London B 238, 331–350 (1990)Google Scholar
  59. 59.
    Stürzl, W., Cheung, A., Cheng, K., Zeil, J.: The information content of panoramic images I. The rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes 34, 1–14 (2008)CrossRefGoogle Scholar
  60. 60.
    Stürzl, W., Mallot, H.A.: Vision-based homing with a panoramic stereo sensor. In: H.H. Bülthoff, S.W. Lee, T.A. Poggio, C. Wallraven (eds.) Biologically Motivated Computer Vision, LNCS, vol. 2525, pp. 620–628 (2002)Google Scholar
  61. 61.
    Stürzl, W., Mallot, H.A.: Efficient visual homing based on Fourier transformed panoramic images. Robotics and Autonomous Systems 54, 300–313 (2006)CrossRefGoogle Scholar
  62. 62.
    Stürzl, W., Zeil, J.: Depth, contrast and view-based homing in outdoor scenes. Biological Cybernetics 96, 519–531 (2007)zbMATHCrossRefGoogle Scholar
  63. 63.
    Tinbergen, N.: Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.). Zeitschrift für vergleichende Physiologie 16, 305–334 (1932)Google Scholar
  64. 64.
    Tinbergen, N., Kruyt, W.: Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.). III. Die Bevorzugung bestimmter Wegmarken. Zeitschrift für vergleichende Physiologie 25, 292–334 (1938)Google Scholar
  65. 65.
    Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17, 47–89 (2005)CrossRefGoogle Scholar
  66. 66.
    Vollbehr, J.: Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zoologisches Jahrbuch Physiologie 79, 33–69 (1975)Google Scholar
  67. 67.
    Wallace, G.K.: Visual scanning in the desert locust Schistocerca gregaria Foskal. Journal of Experimental Biology 36, 512–525 (1959)Google Scholar
  68. 68.
    Wehner, R., Räber, F.: Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35, 1569–1571 (1979)CrossRefGoogle Scholar
  69. 69.
    Wei, C.A., Rafalko, S.L., Dyer, F.C.: Deciding to learn: modulation of learning flights in honeybees, Apis mellifera. Journal of Comparative Physiology A 188, 725–37 (2002)CrossRefGoogle Scholar
  70. 70.
    Werner, A., Menzel, R., Wehrhahn, C.: Color constancy in the honeybee. The Journal of Neuroscience 8, 156–159 (1988)Google Scholar
  71. 71.
    Zanker, J.M., Zeil, J.: Movement-induced motion signal distributions in outdoor scenes. Network: Computation in Neural Systems 16, 357–376 (2005)CrossRefGoogle Scholar
  72. 72.
    Zeil, J.: Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera): I. Description of flight. Journal of Comparative Physiology A 172, 189–205 (1993a)CrossRefGoogle Scholar
  73. 73.
    Zeil, J.: Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera): II. Similarities between orientation and return flights and the use of motion parallax. Journal of Comparative Physiology A 172, 207–222 (1993b)CrossRefGoogle Scholar
  74. 74.
    Zeil, J., Boeddeker, N., Hemmi, J., Stürzl, W.: Going wild: Toward an ecology of visual information processing. In: G. North, R. Greenspan (eds.) Invertebrate Neurobiology, pp. 381–403. Cold Spring Harbor (2007)Google Scholar
  75. 75.
    Zeil, J., Hofmann, M.I., Chahl, J.S.: Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A 20, 450–469 (2003)CrossRefGoogle Scholar
  76. 76.
    Zeil, J., Kelber, A., Voss, R.: Structure and function of learning flights in ground-nesting bees and wasps. Journal of Experimental Biology 199, 245–252 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jochen Zeil
    • 1
    Email author
  • Norbert Boeddeker
    • 2
  • Wolfgang Stürzl
    • 2
  1. 1.ARC Centre of Excellence in Vision Science and Centre for Visual Sciences, Research School of BiologyThe Australian National UniversityCanberraAustralia
  2. 2.Department of Neurobiology and Center of Excellence ‘Cognitive Interaction Technology’Bielefeld UniversityBielefeldGermany

Personalised recommendations