Wide-Field Integration Methods for Visuomotor Control

  • J. Sean HumbertEmail author
  • Joseph K. Conroy
  • Craig W. Neely
  • Geoffrey Barrows


In this chapter wide-field integration (WFI) methods, inspired by the spatial decompositions of wide-field patterns of optic flow in the insect visuomotor system, are reviewed as an efficient means to extract visual cues for guidance and navigation. A control-theoretic framework is described that is used to quantitatively link weighting functions to behaviorally relevant interpretations such as relative orientation, position, and speed in a corridor environment. The methodology is demonstrated on a micro-helicopter using analog VLSI sensors in a bent corridor.


Optic Flow Forward Speed Ground Vehicle Optic Flow Field Spatial Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support for this research was provided in part by the Army Research Office under grants DAAD19-03-D-0004 and Army-W911NF0410176, and the Air Force Research Laboratory under contract FA8651-07-C-0099. The authors would also like to thank Andrew M. Hyslop and Evan R. Ulrich for contributions to the work presented.


  1. 1.
    Barrows, G., Chahl, J., Srinivasan, M.: Biologically inspired visual sensing and flight control. The Aeronautical Journal 107, 159–168 (2003)Google Scholar
  2. 2.
    Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A 188, 419–437 (2002)CrossRefGoogle Scholar
  3. 3.
    Conroy, J., Pines, D.: System identification of a miniature electric helicopter using mems inertial, optic flow, and sonar sensing. Proceedings of the American Helicopter Society. Virginia Beach, VA (2007)Google Scholar
  4. 4.
    Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, San Francisco, CA (2005)Google Scholar
  5. 5.
    Egelhaaf, M., Kern, R., Krapp, H., Kretzberg, J., Kurtz, R., Warzecha, A.: Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences 25, 96–102 (2002)CrossRefGoogle Scholar
  6. 6.
    Franz, M., Chahl, J., Krapp, H.: Insect-inspired estimation of egomotion. Neural Computation 16, 2245–2260 (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Franz, M., Krapp, H.: Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biological Cybernetics 83, 185–197 (2000)CrossRefGoogle Scholar
  8. 8.
    Franz, M., Mallot, H.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)CrossRefGoogle Scholar
  9. 9.
    Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly, part i. the horizontal cells: structure and signals. Biological Cybernetics 45, 143–156 (1982)CrossRefGoogle Scholar
  10. 10.
    Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly, part ii. the horizontal cells: Receptive field organization and response characteristics. Biological Cybernetics 46, 67–79 (1982)CrossRefGoogle Scholar
  11. 11.
    Hengstenberg, R., Hausen, K., Hengstenberg, B.: The number and structure of giant vertical cells (vs) in the lobula plate of the blowfly Calliphora erythrocephala. Journal of Comparative Physiology. 149, 163–177 (1982)CrossRefGoogle Scholar
  12. 12.
    Horn, B.K.: Robot Vision. MIT Press and McGraw-Hill, Cambridge, MA (1986)Google Scholar
  13. 13.
    Humbert, J.S., Hyslop, A.M., Chinn, M.W.: Experimental validation of wide-field integration methods for autonomous navigation. Proceedings of the IEEE Conference on INtelligent Robots and Systems (IROS). San Diego, CA (2007)Google Scholar
  14. 14.
    Humbert, J.S., Murray, R.M., Dickinson, M.H.: A control-oriented analysis of bio-inspired visuomotor convergence (submitted). Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain (2005)Google Scholar
  15. 15.
    Humbert, J.S., Murray, R.M., Dickinson, M.H.: Sensorimotor convergence in visual navigation and flight control systems. Proceedings of the 16th IFAC World Congress. Praha, Czech Republic (2005)Google Scholar
  16. 16.
    Hyslop, A., Humbert, J.S.: Wide-field integration methods for autonomous navigation of 3d environments. Proceedings of the AIAA Conference on Guidance, Navigation, and Control. Honolulu, HI (2008)Google Scholar
  17. 17.
    Krapp, H., Hengstenberg, B., Hengstenberg, R.: Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology 79, 1902–1917 (1998)Google Scholar
  18. 18.
    Krapp, H., Hengstenberg, R.: Estimation of self-motion by optic flow processing in single visual interneurons. Letters to Nature 384, 463–466 (1996)CrossRefGoogle Scholar
  19. 19.
    Santos-Victor, J., Sandini, G.: Embedded visual behaviors for navigation. Robotics and Autonomous Systems 19, 299–313 (1997)CrossRefGoogle Scholar
  20. 20.
    Srinivasan, M., Zhang, S., Lehrer, M., Collet, T.: Honeybee navigation en route to the goal: visual flight control and odometry. The Journal of Experimental Biology 199, 237–244 (1996)Google Scholar
  21. 21.
    Stevens, B., Lewis, F.: Aircraft Control and Simulation. John Wiley & Sons, Inc., Hoboken, NJ (2003)Google Scholar
  22. 22.
    Tammero, L.F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. The Journal of Experimental Biology 205, 327–343 (2002)Google Scholar
  23. 23.
    Tichler, M., Remple, R.K.: Aircraft and Rotorcraft System Identification: Engineering Methods and Flight Test Examples. American Institute of Aeronautics and Astronautics, Inc., Reston, VA (2006)Google Scholar
  24. 24.
    Wood, R., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.: First takeoff of a biologially-inspired at-scale robotic insect. IEEE Transactions on robotics 24(2), 341–347 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Sean Humbert
    • 1
    Email author
  • Joseph K. Conroy
    • 1
  • Craig W. Neely
    • 2
  • Geoffrey Barrows
    • 2
  1. 1.Autonomous Vehicle LaboratoryUniversity of MarylandCollege ParkUSA
  2. 2.CenteyeWashingtonUSA

Personalised recommendations