Skip to main content

Wide-Field Integration Methods for Visuomotor Control

  • Chapter
  • First Online:

Abstract

In this chapter wide-field integration (WFI) methods, inspired by the spatial decompositions of wide-field patterns of optic flow in the insect visuomotor system, are reviewed as an efficient means to extract visual cues for guidance and navigation. A control-theoretic framework is described that is used to quantitatively link weighting functions to behaviorally relevant interpretations such as relative orientation, position, and speed in a corridor environment. The methodology is demonstrated on a micro-helicopter using analog VLSI sensors in a bent corridor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrows, G., Chahl, J., Srinivasan, M.: Biologically inspired visual sensing and flight control. The Aeronautical Journal 107, 159–168 (2003)

    Google Scholar 

  2. Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A 188, 419–437 (2002)

    Article  Google Scholar 

  3. Conroy, J., Pines, D.: System identification of a miniature electric helicopter using mems inertial, optic flow, and sonar sensing. Proceedings of the American Helicopter Society. Virginia Beach, VA (2007)

    Google Scholar 

  4. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, San Francisco, CA (2005)

    Google Scholar 

  5. Egelhaaf, M., Kern, R., Krapp, H., Kretzberg, J., Kurtz, R., Warzecha, A.: Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences 25, 96–102 (2002)

    Article  Google Scholar 

  6. Franz, M., Chahl, J., Krapp, H.: Insect-inspired estimation of egomotion. Neural Computation 16, 2245–2260 (2004)

    Article  MATH  Google Scholar 

  7. Franz, M., Krapp, H.: Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biological Cybernetics 83, 185–197 (2000)

    Article  Google Scholar 

  8. Franz, M., Mallot, H.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)

    Article  Google Scholar 

  9. Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly, part i. the horizontal cells: structure and signals. Biological Cybernetics 45, 143–156 (1982)

    Article  Google Scholar 

  10. Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly, part ii. the horizontal cells: Receptive field organization and response characteristics. Biological Cybernetics 46, 67–79 (1982)

    Article  Google Scholar 

  11. Hengstenberg, R., Hausen, K., Hengstenberg, B.: The number and structure of giant vertical cells (vs) in the lobula plate of the blowfly Calliphora erythrocephala. Journal of Comparative Physiology. 149, 163–177 (1982)

    Article  Google Scholar 

  12. Horn, B.K.: Robot Vision. MIT Press and McGraw-Hill, Cambridge, MA (1986)

    Google Scholar 

  13. Humbert, J.S., Hyslop, A.M., Chinn, M.W.: Experimental validation of wide-field integration methods for autonomous navigation. Proceedings of the IEEE Conference on INtelligent Robots and Systems (IROS). San Diego, CA (2007)

    Google Scholar 

  14. Humbert, J.S., Murray, R.M., Dickinson, M.H.: A control-oriented analysis of bio-inspired visuomotor convergence (submitted). Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain (2005)

    Google Scholar 

  15. Humbert, J.S., Murray, R.M., Dickinson, M.H.: Sensorimotor convergence in visual navigation and flight control systems. Proceedings of the 16th IFAC World Congress. Praha, Czech Republic (2005)

    Google Scholar 

  16. Hyslop, A., Humbert, J.S.: Wide-field integration methods for autonomous navigation of 3d environments. Proceedings of the AIAA Conference on Guidance, Navigation, and Control. Honolulu, HI (2008)

    Google Scholar 

  17. Krapp, H., Hengstenberg, B., Hengstenberg, R.: Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology 79, 1902–1917 (1998)

    Google Scholar 

  18. Krapp, H., Hengstenberg, R.: Estimation of self-motion by optic flow processing in single visual interneurons. Letters to Nature 384, 463–466 (1996)

    Article  Google Scholar 

  19. Santos-Victor, J., Sandini, G.: Embedded visual behaviors for navigation. Robotics and Autonomous Systems 19, 299–313 (1997)

    Article  Google Scholar 

  20. Srinivasan, M., Zhang, S., Lehrer, M., Collet, T.: Honeybee navigation en route to the goal: visual flight control and odometry. The Journal of Experimental Biology 199, 237–244 (1996)

    Google Scholar 

  21. Stevens, B., Lewis, F.: Aircraft Control and Simulation. John Wiley & Sons, Inc., Hoboken, NJ (2003)

    Google Scholar 

  22. Tammero, L.F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. The Journal of Experimental Biology 205, 327–343 (2002)

    Google Scholar 

  23. Tichler, M., Remple, R.K.: Aircraft and Rotorcraft System Identification: Engineering Methods and Flight Test Examples. American Institute of Aeronautics and Astronautics, Inc., Reston, VA (2006)

    Google Scholar 

  24. Wood, R., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.: First takeoff of a biologially-inspired at-scale robotic insect. IEEE Transactions on robotics 24(2), 341–347 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The support for this research was provided in part by the Army Research Office under grants DAAD19-03-D-0004 and Army-W911NF0410176, and the Air Force Research Laboratory under contract FA8651-07-C-0099. The authors would also like to thank Andrew M. Hyslop and Evan R. Ulrich for contributions to the work presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sean Humbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Humbert, J.S., Conroy, J.K., Neely, C.W., Barrows, G. (2009). Wide-Field Integration Methods for Visuomotor Control. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics