Advertisement

Technology and Fabrication of Ultralight Micro-Aerial Vehicles

  • Adam KlaptoczEmail author
  • Jean-Daniel Nicoud
Chapter

Abstract

Recent advances in micro-air vehicles have produced impressive results for platforms weighing below 50 g. The lightest platforms to take flight with a minimum of functionality are below 0.5 g, but researchers dream of flying at insect size. However, many difficulties occur when scaling down existing technologies. Aerodynamic laws equate to decreased efficiency at smaller sizes and hence more power per weight is required. Current energy storage technologies do not have the required capacity and powertrains are no longer efficient enough. Construction is difficult due to small size and low weight requirements. This chapter surveys the status of current technology and its prospects in miniaturization and shows several examples to illustrate the state of the art and the difficulties in reaching ever-smaller platform sizes.

Keywords

Obstacle Avoidance Flight Time Defense Advance Research Project Agency NiTi Wire BLDC Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Swiss National Science Foundation and by the Future Emerging Technologies division of the European Commission within the Swarmanoid project.

References

  1. 1.
    Acarnley, P., Watson, J.: Review of Position-Sensorless Operation of Brushless Permanent-Magnet Machines. Industrial Electronics, IEEE Transactions on 53(2), 352–362 (2006)CrossRefGoogle Scholar
  2. 2.
    Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators As Artificial Muscles: Reality, Potential, and Challenges. SPIE Press (2004)Google Scholar
  3. 3.
    Bermes, C., Leutenegger, S., Bouabdallah, S., Schafroth, D., Siegwart, R.: New Design of the Steering Mechanism for a Mini Coaxial Helicopter. Intelligent Robots and Systems, 2008 IEEE-RSJ International Conference on (2008)Google Scholar
  4. 4.
    Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. Proc. of The IEEE International Conference on Intelligent Robots (IROS) (2007)Google Scholar
  5. 5.
    Chan, C., Peng, H., Liu, G., McIlwrath, K., Zhang, X., Huggins, R., Cui, Y.: High-performance Lithium Battery Anodes using Silicon Nanowires. Nature Nanotechnology 3(1), 31 (2007)CrossRefGoogle Scholar
  6. 6.
    Cory, R., Tedrake, R.: Experiments in fixed-wing uav perching. Guidance, Navigation, and Control, 2008 AIAA Conference on (2008)Google Scholar
  7. 7.
    Dario, P., Carrozza, M., Stefanini, C., D’Attanasio, S.: A mobile microrobot actuated by a new electromagnetic wobble micromotor. Mechatronics, IEEE/ASME Transactions on 3(1), 9–16 (1998). DOI 10.1109/3516.662863CrossRefGoogle Scholar
  8. 8.
    De Wagter, C., Mulder, J.: Towards Vision-Based UAV Situation Awareness. AIAA Guidance, Navigation and Control Conference, pp. 15–18 (2005)Google Scholar
  9. 9.
    Ellington, C., Usherwood, J.: Lift and drag characteristics of rotary and flapping wings. T. Mueller (ed.) Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Chap. 12, pp. 231–248. AIAA (2001)Google Scholar
  10. 10.
    Frechette, L., Jacobson, S., Breuer, K., Ehrich, F., Ghodssi, R., Khanna, R., Wong, C., Zhang, X., Schmidt, M., Epstein, A., et al.: Demonstration of a Microfabricated High-Speed Turbine Supported on Gas Bearings. Solid-State Sensor and Actuator Workshop, Hilton Head. Microsystems Technology Laboratories, Massachusetts Institute of Technology (2000)Google Scholar
  11. 11.
    Grasmeyer, J., Keennon, M.: Development of the black widow micro air vehicle. T.J. Mueller (ed.) Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, vol. 195, pp. 519–535. AIAA (2001)Google Scholar
  12. 12.
    Gurdan, D., Stumpf, J., Achtelik, M., Doth, K., Hirzinger, G., Rus, D.: Energy-efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz. Robotics and Automation, 2007 IEEE International Conference on, pp. 361–366 (2007)Google Scholar
  13. 13.
    Hassoun, J., Reale, P., Scrosati, B.: Recent Advances in Liquid and Polymer Lithium-Ion Batteries. Journal of Materials Chemistry 17(35), 3668–3677 (2007)CrossRefGoogle Scholar
  14. 14.
    Karpelson, M., Wei, G.Y., Wood, R.: A review of actuation and power electronics options for flapping-wing robotic insects. Robotics and Automation, 2008, IEEE International Conference on pp. 779–786 (2008). DOI 10.1109/ROBOT.2008.4543300Google Scholar
  15. 15.
    Kovac, M., Guignard, A., Nicoud, J.D., Zufferey, J.C., Floreano, D.: A 1.5 g sma-actuated microglider looking for the light. IEEE International Conference on Robotics and Automation (ICRA’2007), pp. 367–372 (2007)Google Scholar
  16. 16.
    Kovac, M., Zufferey, J.C., Floreano, D.: Towards the self deploying microglider, a biomimetic jumping and gliding robot. 4th International Symposium on Adaptive Motion of Animals and Machines, pp. 41–42 (2008)Google Scholar
  17. 17.
    Kroo, I., Prinz, F., Shantz, M., Kunz, P., Fay, G., Cheng, S., Fabian, T., Partridge, C.: The Mesicopter: A Miniature Rotorcraft Concept Phase II Interim Report (2000)Google Scholar
  18. 18.
    Leishman, J.: The Breguet-Richet Quad-Rotor Helicopter of 1907. Vertiflite 47(3), 58–60 (2001)Google Scholar
  19. 19.
    Leven, S., Zufferey, J.C., Floreano, D.: A simple and robust fixed-wing platform for outdoor flying robot experiments. International Symposium on Flying Insects and Robots, pp. 69–70 (2007)Google Scholar
  20. 20.
    Madden, J.: Mobile robots: Motor challenges and materials solutions. Science 318(5853), 1094–1097 (2007)CrossRefGoogle Scholar
  21. 21.
    Mak, L., Kumon, M., Whitty, M., Nicoletti, M., Xu, H., Zhan, K., Kalkbrenner, G., Abril, G., Atkins, D., Chare, C., et al.: Design and Development of the Micro Aerial Vehicles for Search, Tracking And Reconnaissance (MAVSTAR) for MAV08. In: 1st US-Asian demonstration and assessment of micro-aerial and unmanned ground vehicle technology (MAV08) (2008)Google Scholar
  22. 22.
    Mendelow, B., Muir, P., Boshielo, B., Robertson, J.: Development of e-Juba, a Preliminary Proof of Concept Unmanned Aerial Vehicle Designed to Facilitate the Transportation of Microbiological Test Samples from Remote Rural Clinics to National Health Laboratory Service Laboratories. South African Medical Journal 97(11), 1215 (2007)Google Scholar
  23. 23.
    Merino, L., Caballero, F., Martinez-de Dios, J., Ferruz, J., Ollero, A.: A Cooperative Perception System for Multiple UAVs: Application to Automatic Detection of Forest Fires. Journal of Field Robotics 23(3-4), 165 (2006)CrossRefGoogle Scholar
  24. 24.
    Moeckel, R., Liu, R.: Steering with an aVLSI Motion Detection Chip. Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on pp. 1036–1039 (2008)Google Scholar
  25. 25.
    Nicoud, J.D., Zufferey, J.C.: Toward indoor flying robots. IEEE/RSJ International Conference on Robots and Systems (IROS’02), Lausanne pp. 787–792 (2002)Google Scholar
  26. 26.
    Ning, G., White, R., Popov, B.: A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries. Electrochimica Acta 51(10), 2012–2022 (2006)CrossRefGoogle Scholar
  27. 27.
    Oh, P., Joyce, M., Gallagher, J.: Designing an Aerial Robot for Hover-and-Stare Surveillance. Advanced Robotics, 2005. ICAR’05. Proceedings., 12th International Conference on, pp. 303–308 (2005)Google Scholar
  28. 28.
    Peirs, J., Reynaerts, D., Verplaetsen, F.: A Microturbine for Electric Power Generation. Sensors & Actuators: A Physical 113(1), 86–93 (2004)CrossRefGoogle Scholar
  29. 29.
    Pelrine, R., Kornbluh, R., Pei, Q., Stanford, S., Oh, S., Eckerle, J., Full, R., Rosenthal, M., Meijer, K.: Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion. Proceedings of SPIE, vol. 4695, pp. 126–137. Bellingham (2002)Google Scholar
  30. 30.
    Pichonat, T., Gauthier-Manuel, B.: Development of Porous Silicon-based Miniature Fuel Cells. Journal of Micromechanics and Microengineering 15(9), 179 (2005)CrossRefGoogle Scholar
  31. 31.
    de Piolenc, F., Wright Jr, G.: Ducted Fan Design. Mass Flow (2001)Google Scholar
  32. 32.
    Planta, C., Conradt, J., Jencik, A., Verschure, P.: A Neural Model of the Fly Visual System Applied to Navigational Tasks. Lecture Notes in Computer Science pp. 1268–1274 (2002)Google Scholar
  33. 33.
    Pope, A., Rae, W.: Low-Speed Wind Tunnel Testing. John Wiley & Sons (1984)Google Scholar
  34. 34.
    Pornsin-Sirirak, T., Lee, S., Nassef, H., Grasmeyer, J., Tai, Y., Ho, C., Keennon, M.: MEMS Wing Technology for a Battery-powered Ornithopter. Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, pp. 799–804 (2000)Google Scholar
  35. 35.
    Pressnell, M.: Airfoils for Aeromodellers. Pitman (1977)Google Scholar
  36. 36.
    Prouty, R.: Helicopter Performance, Stability, and Control. Wadsworth Pub Co (1986)Google Scholar
  37. 37.
    Roberts, J., Zufferey, J.C., Floreano, D.: Energy Management for Indoor Hovering Robots. IEEE International Conference on Robots and Systems (IROS’08) (2008)Google Scholar
  38. 38.
    Roberts, J.F., Stirling, T., Zufferey, J.C., Floreano, D.: Quadrotor using minimal sensing for autonomous indoor flight. European Micro Air Vehicle Conference and Flight Competition (EMAV2007) (2007)Google Scholar
  39. 39.
    Schafroth, D., Bouabdallah, S., Bermes, C., Siegwart, R.: From the test benches to the first prototype of the mufly micro helicopter. Journal of Intelligent and Robotic Systems (2008)Google Scholar
  40. 40.
    Schindall, J.: The charge of the ultracapacitors. Spectrum, IEEE 44(11), 42–46 (2007)CrossRefGoogle Scholar
  41. 41.
    Shyy, W., Lian, Y., Viieru, D.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press (2007)Google Scholar
  42. 42.
    Signorelli, R., Schindall, J., Kassakian, J.: Nanotube Enhanced Ultracapacitors. International Seminar Double Layer Capacit. Similar Energy Storage Devices, 15th, MIT, Cambridge, MA (2005)Google Scholar
  43. 43.
    Simons, M.: Model Aircraft Aerodynamics. Argus Books Ltd (1987)Google Scholar
  44. 44.
    Usherwood, J., Ellington, C.: The Aerodynamics of Revolving Wings I-II. Journal of Experimental Biology 205(11), 1547–1576 (2002)Google Scholar
  45. 45.
    Valenti, M., Bethke, B., How, J., de Farias, D., Vian, J.: Embedding Health Management into Mission Tasking for UAV Teams. American Control Conference, 2007. ACC’07, pp. 5777–5783 (2007)Google Scholar
  46. 46.
    Wang, G., Sheng, H., Lu, T., Wang, D., Hu, F.: Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter. Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on, pp. 1804–1809 (2007)Google Scholar
  47. 47.
    Wood, R.: The first takeoff of a biologically inspired at-scale robotic insect. Robotics, IEEE Transactions on 24(2), 341–347 (2008). 10.1109/TRO.2008.916997CrossRefGoogle Scholar
  48. 48.
    Yu, J., Cheng, P., Ma, Z., Yi, B.: Fabrication of Miniature Silicon Wafer Fuel Cells with Improved Performance. Journal of Power Sources 124(1), 40–46 (2003)CrossRefGoogle Scholar
  49. 49.
    Zhang, H., Dong, S., Zhang, S., Wang, T., Zhang, Z., Fan, L.: Ultrasonic Micro-motor using Miniature Piezoelectric Tube with Diameter of 1.0 mm. Ultrasonics 44, 603–606 (2006)CrossRefGoogle Scholar
  50. 50.
    Zufferey, J.C., Guanella, A., Beyeler, A., Floreano, D.: Flying over the reality gap: From simulated to real indoor airships. Autonomous Robots 21(3), 243–254 (2006)CrossRefGoogle Scholar
  51. 51.
    van der Zwaan, S., Bernardino, A., Santos-Victor, J.: Visual Station Keeping for Floating Robots in Unstructured Environments. Robotics and Autonomous Systems 39(3-4), 145–155 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Lab of Intelligent SystemsEPFLLausanneSwitzerland
  2. 2.Didel SABelmontSwitzerland

Personalised recommendations