A Miniature Vehicle with Extended Aerial and Terrestrial Mobility

  • Richard J. Bachmann
  • Ravi Vaidyanathan
  • Frank J. Boria
  • James Pluta
  • Josh Kiihne
  • Brian K. Taylor
  • Robert H. Bledsoe
  • Peter G. Ifju
  • Roger D. QuinnEmail author


This chapter describes the design, fabrication, and field testing of a small robot (30.5 cm wingspan and 30.5 cm length) capable of motion in both aerial and terrestrial mediums. The micro-air–land vehicle (MALV) implements abstracted biological inspiration in both flying and walking mechanisms for locomotion and transition between modes of operation. The propeller-driven robot employs an undercambered, chord-wise compliant wing to achieve improved aerial stability over rigid-wing micro-air vehicles (MAVs) of similar size. Flight maneuverability is provided through elevator and rudder control. MALV lands and walks on the ground using an animal-inspired passively compliant wheel-leg running gear that enables the robot to crawl and climb, including surmounting obstacles larger than its own height. Turning is accomplished through differential activation of wheel-legs. The vehicle successfully performs the transition from flight to walking and is able to transition from terrestrial to aerial locomotion by propeller thrust on a smooth horizontal surface or by walking off a vertical surface higher than 6 m. Fabricated of lightweight carbon fiber the ~100 g vehicle is capable of flying, landing, and crawling with a payload exceeding 20% its own mass. To our knowledge MALV is the first successful vehicle at this scale to be capable of both aerial and terrestrial locomotion in real-world terrains and smooth transitions between the two.


Landing Gear Video Feedback Flexible Wing Terrestrial Locomotion Legged Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Air Force Research Laboratories Munitions Research Directorate (under contracts FA8651-04-C-0234 and FA8651-05-C-0097) and by the Naval Postgraduate School (NPS)/USSOCOM Field Experimentation Cooperative Program. The authors would like to acknowledge the program support directors Dr. David Netzer of the Naval Postgraduate School and Chris Perry and Jeffery Wagner at Us Air Force Research Laboratories for technical and mission planning insights. Dr. Kevin Jones provided assistance in sensor placement and piloting/performance research. Baron Johnson and Daniel Claxton made significant contributions including vehicle design and flight testing. Michael Sytsma, Michael Morton, and the University of Florida MAV group also contributed to the development, testing, and analysis of MALV II.


  1. 1.
    Ifju, P.G., Ettinger, S., Jenkins, D.A., Lian, Y., Shyy, W., Waszak, M.R.: Flexible-Wing-Based Micro Air Vehicles, 40th AIAA Aerospace Sciences Meeting, Reno, NV AIAA 2002-0705 (January 2002)Google Scholar
  2. 2.
    Morrey, J.M., Lambrecht, B., Horchler, A.D., Ritzmann, R.E., and Quinn, R.D.: Highly Mobile and Robust Small Quadruped Robots. IEEE Int. Conf. On Intelligent Robots and Systems (IROS’03), Las Vegas, Nevada, Vol. 1, pp. 82–87 (2003)Google Scholar
  3. 3.
    Morasso, P., Bottaro, A., Casadio, M., Sanguineti, V.: Preflexes and internal models in biomimetic robot systems. Cognitive Process 6, 25–36 (2005)CrossRefGoogle Scholar
  4. 4.
    Alexander, R.McN.: Three Uses for Springs in Legged Locomotion. International Journal of Robotics Research 9, 2 (1990)CrossRefGoogle Scholar
  5. 5.
    Shyy, W., Berg, M., Ljungqvist, D.: Flapping and Flexible Wings for Biological and Micro Vehicles. Process in Aerospace Sciences 35(5), 455–506 (1999)CrossRefGoogle Scholar
  6. 6.
    Loeb, G.E., Brown, I.E., Cheng, E.J.: A hierarchical foundation for models of sensorimotor control. Experimental Brain Research. 126, 1–18 (1999)CrossRefGoogle Scholar
  7. 7.
    Jindrich, D.L., Full, R.J.: Dynamic stabilization of rapid hexapedal locomotion. Journal of Experimental Biology 205, 2803–2823 (2002)Google Scholar
  8. 8.
    Brown, I.E., Loeb, G.E.: A reductionist approach to creating and using neuromusculoskeletal models. In: J.M. Winters, P.E. Crago (eds.) Biomechanics and neural control of movement. Springer, Berlin Heidelberg New York, pp. 148–163 (1997)Google Scholar
  9. 9.
    Quinn, R.D., Nelson, G.M., Ritzmann, R.E., Bachmann, R.J., Kingsley, D.A., Offi, J.T., Allen, T.J.: Parallel Strategies For Implementing Biological Principles Into Mobile Robots. International Journal of Robotics Research 22(3), 169–186 (2003)CrossRefGoogle Scholar
  10. 10.
    Saranli, U., Buehler, M., Koditschek, D.: RHex a simple and highly mobile hexapod robot. International Journal of Robotics Research 20(7), 616–631 (2001)CrossRefGoogle Scholar
  11. 11.
    Stoeter, S.A., Rybski, P.E., Gini, M., Papanikolopoulos, N.: Autonomous Stair-Hopping with Scout Robots. Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS’02), pp. 721–726, Lausanne, Switzerland (September/October 2002)Google Scholar
  12. 12.
    Morrey, J.M., Lambrecht, B., Horchler, A.D., Ritzmann, R.E., Quinn, R.D.: Highly Mobile and Robust Small Quadruped Robots. IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas (2003)Google Scholar
  13. 13.
    Kovac, M., Fuchs, M., Guignard, A., Zufferey, J.-C., Floreano, D.: A miniature 7 g jumping robot. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2008), pp. 373–378, (2008)Google Scholar
  14. 14.
    Daltorio K.A., Gorb, S., Peressadko, A., Horchler, A.D., Ritzmann, R.E., Quinn, R.D.: A Robot that Climbs Walls using Micro-structured Polymer Feet. International Conference on Climbing and Walking Robots (CLAWAR), London, U.K. (September 13–15, 2005)Google Scholar
  15. 15.
    Kim, S., Asbeck, A., Provancher, W., Cutkosky, M.R.: SpinybotII: Climbing Hard Walls with Compliant Microspines. Proceedings of the IEEE International Conference on Autonomous Robots, Seattle, WA (July, 18–20, 2005)Google Scholar
  16. 16.
    K-TEAM SA HEADQUARTERS SWITZERLAND Chemin du Vuasset, CP 111, 1028 Préverenges, SWITZERLANDGoogle Scholar
  17. 17.
    Bererton, C., Navarro-Serment, L.E., Grabowski, R., Paredis, C.J.J., Khosla, P.K.: Millibots: Small Distributed Robots for Surveillance and Mapping. Government Microcircuit Applications Conference, pp. 20–23 (March 2000)Google Scholar
  18. 18.
    Fukui, R., Torii, A., Ueda, A.: Micro robot actuated by rapid deformation of piezoelectric elements. Proceedings 2001 International Symposium on Micromechatronics and Human Science, (MHS 2001), pp 117–22 (2001)Google Scholar
  19. 19.
    Birch, M.C., Quinn, R.D., Ritzmann, R.E., Pollack, A.J., Philips, S.M.: Micro-robots inspired by crickets. Proceedings of Climbing and Walking Robots Conference (CLAWAR’02). Paris, France (2002)Google Scholar
  20. 20.
    Clark, J.E., Cham, J.G., Bailey, S.A., Froehlich, E.M., Nahata, P.K., Full, R.J., Cutkosky, M.R.: Biomimetic design and fabrication of a hexapedal running robot. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation 4, 3643–3649 (2001)Google Scholar
  21. 21.
    Allen, T.J., Quinn, R.D., Bachmann, R.J., Ritzmann, R.E.: Abstracted Biological Principles Applied with Reduced Actuation Improve Mobility of Legged Vehicles. Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS ’03), V.2, pp. 1370–1375. Las Vegas, USA (2003)Google Scholar
  22. 22.
    Morrey, J.M., Horchler, A.D., Didona, N., Lambrecht, B., Ritzmann, R.E., Quinn, R.D.: Increasing Small Robot Mobility Via Abstracted Biological Inspiration. IEEE International Conference on Robotics and Automation (ICRA’03) Video Proceedings. Taiwan (2003)Google Scholar
  23. 23.
    Kim, S., Clark, J.E., Cutkosky, M.R.: iSprawl: Design and Tuning for High Speed Autonomous Open Loop Running. International Journal of Robotics Research 25(9), 903–912 (2006)Google Scholar
  24. 24.
    Grasmeyer, J.M., Keennon, M.T.: Development of the Black Widow Micro Air Vehicle. AIAA Chapter No. 2001-0127 (2001)Google Scholar
  25. 25.
    Morris, S., Holden, M.: Design of Micro Air Vehicles and Flight Test Validation. Proceeding of the Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, pp. 153–176 (2000)Google Scholar
  26. 26.
    Frontiers of Engineering: Reports on Leading Edge Engineering, 2001 NAE Symposium on Frontiers of Engineering, National Academy of Engineering, p. 12 (2002)Google Scholar
  27. 27.
    Ellington, C.P.: The Aerodynamics of Hovering Flight. Philosophical Transactions of the Royal Society of London 305(1122), 1–181 (1984)CrossRefGoogle Scholar
  28. 28.
    Frampton, K.D., Goldfarb, M., Monopoli, D., Cveticanin, D.: Passive Aeroelastic Tailoring for Optimal Flapping Wings. Proceeding of the Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, pp. 26–33 (2000)Google Scholar
  29. 29.
    Jones, K.D., Duggan, S.J., Platzer, M.F.: Flapping-Wing Propulsion for a Micro Air Vehicle. AIAA Chapter No. 2001–0126 (2001)Google Scholar
  30. 30.
    Jones, K.D., Bradshaw, C.J., Papadopoulos, J., Platzer, M.F.: Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles. 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Chapter 2004-0399, Reno, Nevada (January 5–8, 2004)Google Scholar
  31. 31.
    Lentink, D., Bradshaw, N., Jongerius, S.R.: Novel micro aircraft inspired by insect flight. Comparative Biochemistry and Physiology, Part A 146, S133–S134 (2007)CrossRefGoogle Scholar
  32. 32.
    Waszak, M.R., Jenkins, L.N., Ifju, P.G.: Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle. AIAA Chapter no. 2001–4005 (2001).Google Scholar
  33. 33.
    Shyy, W.: Computational Modeling for Fluid Flow and Interfacial Transport. Elsevier, Amsterdam, The Netherlands (1994) (revised printing 1997).Google Scholar
  34. 34.
    Shyy, W., Thakur, S.S., Ouyang, H., Liu, J., Blosch, E.: Computational Techniques for Complex Transport Phenomena. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  35. 35.
    Shyy, W., Udaykumar, H.S., Rao, M.M., Smith, R.W.: Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis, Washington, DC (1996) (revised printing 1997 & 1998).Google Scholar
  36. 36.
    Smith, R.W., Shyy, W.: Computational Model of Flexible Membrane Wings in Steady Laminar Flow. AIAA Journal 33(10), 1769–1777 (1995)zbMATHCrossRefGoogle Scholar
  37. 37.
    Jenkins D.A., Shyy, W., Sloan, J., Klevebring, F., Nilsson, M.: Airfoil Performance at Low Reynolds Numbers for Micro Air Vehicle Applications. Thirteenth Bristol International RPV/UAV Conference, University of Bristol (1998)Google Scholar
  38. 38.
    Ifju, P.G., Ettinger, S., Jenkins, D.A., Martinez, L.: Composite Materials for Micro Air Vehicles. Proceeding for the SAMPE Annual Conference, Long Beach CA (May 6–10, 2001)Google Scholar
  39. 39.
    Jenkins, D.A., Ifju, P.G., Abdulrahim, M., Olipra, S.: Assessment of the Controllability of Micro Air Vehicles. Micro Air Vehicle Conference, Bristol England (April 2001)Google Scholar
  40. 40.
    Ettinger, S.M., Nechyba, M.C., Ifju, P.G., Waszak, M.: Vision-Guided Flight Stability and Control for Micro Air Vehicles. Proceedings of the IEEE International Conference on Intelligent Robots and Systems 3, 2134–2140 (2002)Google Scholar
  41. 41.
    Zufferey, J.-C., Klaptocz, A., Beyeler, A., Nicoud, J.-D., Floreano, D.: A 10-gram Vision-based Flying Robot. Advanced Robotics 21(14), 1671–1684 (2007)CrossRefGoogle Scholar
  42. 42.
    Lachat, D., Crespi, A., Ijspeert, A.J.: Boxybot: A Swimming and Crawling Fish Robot Controlled by a Central Pattern Generator. Proceedings of The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006) 1, 643–648Google Scholar
  43. 43.
    Georgiadis, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Sim, R., Torres, L.-A., Zhang, P., Buehler, M., Dudek, G., Jenkin, M., Milios, E.: AQUA: An Aquatic Walking Robot. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, Sendai, Japan (September 28–October 2, 2004)Google Scholar
  44. 44.
    Ijspeert, A., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  45. 45.
    Ayers, J., Davis, J.L., Rudolph, A. (eds.): Neurotechnology for Biomimetic Robots. The MIT Press, pp. 481–509 (2002)Google Scholar
  46. 46.
    Michelson, R., Helmick, D., Reece, S., Amareno, C.: A Reciprocating Chemical Muscle (RCM) for Micro Air Vehicle “Entomopter” Flight. AUVSI’97, Proceedings of the Association for Unmanned Vehicle Systems International (July 1997)Google Scholar
  47. 47.
    Watson, J.T., Ritzmann, R.E., Zill, S.N., Pollack, A.J.: Control of obstacle climbing in the cockroach, Blaberus discoidalis: I. Kinematics. Journal of Comparative Physiology 188, 39–53 (2002)CrossRefGoogle Scholar
  48. 48.
    Mueller, T.J. (ed.): Proceedings of the Conference on Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers, Notre Dame University, Indiana (June 5–7, 2000)Google Scholar
  49. 49.
    Mueller, T.J.: The Influence of Laminar Separation and Transition on Low Reynold’s Number Airfoil Hysteresis. Journal of Aircraft 22, 763–770 (1985)CrossRefGoogle Scholar
  50. 50.
    Pringle, J.W.S.: Insect Flight. Cambridge University Press, Cambridge (1957)Google Scholar
  51. 51.
    Ritzmann, R.E., Fourtner, C.R., Pollack, A.J.: Morphological and physiological identification of motor neurons innervating flight musculature in the cockroach, Periplaneta Americana. Journal of Experimental Zoology 225, 347–356 (1983)CrossRefGoogle Scholar
  52. 52.
    Boria F.J., Bachmann, R.J., Ifju, P.G., Quinn, R.D., Vaidyanathan, R., Perry, C., Wagener, J.: A Sensor Platform Capable of Aerial and Terrestrial Locomotion. Proceedings of IEEE/RSJ 2005 International Conference on Intelligent Robots and Systems (IROS2005), Edmonton, Alberta, Canada, pp. 2–6 (August 2005)Google Scholar
  53. 53.
    Lambrecht, B.G.A., Horchler, A.D., Quinn, R.D.: A Small Insect Inspired Robot that Runs and Jumps. Proceeding of the IEEE International Conference on Robotics and Automation (ICRA ’05), Barcelona, Spain (2005)Google Scholar
  54. 54.
    Procerus Technologies (, Kestrel Installation and Configuration Guide (May 2006)
  55. 55.
    Bachmann, R.J., Boria, F.J., Ifju, P.G., Quinn, R.D., Kline, J.E., Vaidyanathan, R.: Utility of a Sensor Platform Capable of Aerial and Terrestrial Locomotion. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2005), Monterey California (July, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Richard J. Bachmann
    • 1
  • Ravi Vaidyanathan
    • 2
    • 3
  • Frank J. Boria
    • 4
  • James Pluta
    • 5
  • Josh Kiihne
    • 5
  • Brian K. Taylor
    • 6
  • Robert H. Bledsoe
    • 5
  • Peter G. Ifju
    • 6
  • Roger D. Quinn
    • 7
    Email author
  1. 1.BioRobots, LLCClevelandUSA
  2. 2.Department of Systems EngineeringUniversity of BristolBristolUK
  3. 3.Department of Systems EngineeringNaval Postgraduate SchoolMontereyUSA
  4. 4.Department of Mechanical EngineeringUniversity of FloridaGainesvilleUSA
  5. 5.United States Marine CorpsNaval Postgraduate SchoolMontereyUSA
  6. 6.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainsvilleUSA
  7. 7.Department of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations