Advertisement

The Limits of Turning Control in Flying Insects

  • Fritz-Olaf LehmannEmail author
Chapter

Abstract

This chapter provides insights into the turning flight of insects, considering this specific behavior from experimental and numerical perspectives. The presented analyses emphasize the need for a comparative approach to flight control that links an insect’s maneuverability with the physical properties of its body, the properties and response delays of the sensory organs, and the precision with which the muscular system controls the movements of the wings.

In particular, the chapter focuses on the trade-off between lift production and the requirement to produce lateral forces during turning flight. Such information will be useful not only for a better understanding of the evolution and mechanics of insect flight but also for engineers who aim to improve the performance of the future generation of biomimetic micro-air vehicles.

Keywords

Flight Control Free Flight Wing Motion Indirect Flight Muscle Stroke Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alexander, D.E. : Wind tunnel studies of turns by flying dragonflies. The Journal of Experimental Biology 122, 81–98 (1986)Google Scholar
  2. 2.
    Ennos, A.R.: The kinematics and aerodynamics of the free flight of some Diptera. The Journal of Experimental Biology 142, 49–85 (1989)Google Scholar
  3. 3.
    Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495–498 (2003)CrossRefGoogle Scholar
  4. 4.
    Marden, J.H., Wolf, M.R., Weber, K.E.: Aerial performance of Drosophila melanogaster from populations selected for upwind flight ability. The Journal of Experimental Biology 200, 2747–2755 (1997)Google Scholar
  5. 5.
    Mronz, M., Lehmann, F.-O.: The free flight response of Drosophila to motion of the visual environment. The Journal of Experimental Biology 211, 2026–2045 (2008)CrossRefGoogle Scholar
  6. 6.
    Rüppell, G.: Kinematic analysis of symmetrical flight manoeuvres of odonata. The Journal of Experimental Biology 144, 13–42 (1989)Google Scholar
  7. 7.
    Wagner, H.: Flight performance and visual control of flight of the free-flying housefly (Musca domesticaL) II Pursuit of targets. Philosophical Transactions of the Royal Society of London. Series B 312, 553–579 (1986)CrossRefGoogle Scholar
  8. 8.
    Wang, H., Zeng, L., Liu, H., Chunyong, Y.: Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. The Journal of Experimental Biology 206, 745–757 (2003)CrossRefGoogle Scholar
  9. 9.
    Zbikowski, R.: Red admiral agility. Nature 420, 615–618 (2002)CrossRefGoogle Scholar
  10. 10.
    Nalbach, G.: The halteres of the blowfly Calliphora I kinematics and dynamics. Journal Comparative Physiology A 173, 293–300 (1993)CrossRefGoogle Scholar
  11. 11.
    Nalbach, G.: Extremely non-orthogonal axes in a sense organ for rotation: Behavioral analysis of the dipteran haltere system. Neuroscience 61, 149–163 (1994)CrossRefGoogle Scholar
  12. 12.
    Pringle, J.W.S.: The gyroscopic mechanism of the halteres of Diptera. Philosophical Transactions of the Royal Society of London. Series B 233, 347–384 (1948)CrossRefGoogle Scholar
  13. 13.
    Balint, C.N., Dickinson, M.H.: Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vivina. The Journal of Experimental Biology 207, 3813–3838 (2004)CrossRefGoogle Scholar
  14. 14.
    Dickinson, M.H., Lehmann, F.-O., Götz, K.G.: The active control of wing rotation by Drosophila. The Journal of Experimental Biology 182, 173–189 (1993)Google Scholar
  15. 15.
    Dickinson, M.H., Lehmann, F.-O., Sane, S.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)CrossRefGoogle Scholar
  16. 16.
    Götz, K.G., Hengstenberg, B., Biesinger, R.: Optomotor control of wing beat and body posture in Drosophila. Biol Cybernetics 35, 101–112 (1979)CrossRefGoogle Scholar
  17. 17.
    Heide, G.: Flugsteuerung durch nicht-fibrilläre Flugmuskeln bei der Schmeißfliege Calliphora. Z Vergl Physiologie 59, 456–460 (1968)CrossRefGoogle Scholar
  18. 18.
    Lehmann, F.-O., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (Drosophila spp). The Journal of Experimental Biology 201, 385–401 (1998)Google Scholar
  19. 19.
    Casey, T.M., Ellington, C.P.: Energetics of insect flight. In: W. Wieser, E. Gnaiger (eds.) In Energy Transformations in Cells and Organisms, pp. 200–210. Stuttgart, Thieme (1989)Google Scholar
  20. 20.
    Harrison, J.F., Roberts, S.P.: Flight respiration and energetics. Annual Review of Physiology 62, 179–205 (2000)CrossRefGoogle Scholar
  21. 21.
    Lehmann, F.-O.: The constraints of body size on aerodynamics and energetics in flying fruit flies: an integrative view. Zoology 105, 287–295 (2002)CrossRefGoogle Scholar
  22. 22.
    Lehmann, F.-O., Dickinson, M.H.: The changes in power requirements and muscle efficiency during elevated force production in the fruit fly, Drosophila melanogaster. The Journal of Experimental Biology 200, 1133–1143 (1997)Google Scholar
  23. 23.
    Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences 12, 297–306 (1989)CrossRefGoogle Scholar
  24. 24.
    Dill, M., Wolf, R., Heisenberg, M.: Visual pattern recognition in Drosophila involves retinotopic matching. Nature 365, 751–753 (1993)CrossRefGoogle Scholar
  25. 25.
    Egelhaaf, M., Borst, A.: Motion computation and visual orientation in flies. Comparative Biochemistry and Physiology 104A, 659–673 (1993)Google Scholar
  26. 26.
    Franceschini, N., Riehle, A., Nestour, A.: Directionally selective motion detection by insect neurons. In: Stavenga, Hardie (eds.) In Facets of vision, pp. 361–390. Berlin Heidelberg, Springer (1989)Google Scholar
  27. 27.
    Kirschfeld, K.: Automatic gain control in movement detection of the fly. Naturwissenschaften 76, 378–380 (1989)CrossRefGoogle Scholar
  28. 28.
    Krapp, H.G., Hengstenberg, B., Hengstenberg, R.: Dentritic structure and receptive-field organization of optic flow processing interneurons in the fly. American Physiological Society. Journal of Neurophysiology 79 1902–1917 (1998)Google Scholar
  29. 29.
    O’Carroll, D.: Feature-detecting neurons in dragonflies. Nature 362 541–543 (1993)CrossRefGoogle Scholar
  30. 30.
    Reichardt, W.: Evaluation of optical motion information by movement detectors. Journal of Comparative Physiology A 161, 533–547 (1987)CrossRefGoogle Scholar
  31. 31.
    Tammero, L.F., Dickinson, M.H.: Spatial organization of visuomotor reflexes in Drosophila. The Journal of Experimental Biology 207, 113–122 (2004)CrossRefGoogle Scholar
  32. 32.
    Blondeau, J., Heisenberg, M.: The three dimensional optomotor torque system of Drosophila melanogaster. Journal of Comparative Physiology A 145, 321–329 (1982)CrossRefGoogle Scholar
  33. 33.
    Borst, A., Bahde, S.: Comparison between the movement detection systems underlying the optomotor and the landing response in the housefly. Biological Cybernetics 56, 217–224 (1987)CrossRefGoogle Scholar
  34. 34.
    Duistermars, B.J., Chow, D.M., Condro, M., Frye, M.A.: The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila. The Journal of Experimental Biology 210, 3218–3227 (2007)CrossRefGoogle Scholar
  35. 35.
    Egelhaaf, M.: Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology A 165, 719–730 (1989)CrossRefGoogle Scholar
  36. 36.
    Götz, K.G., Wandel, U.: Optomotor control of the force of flight in Drosophila and Musca II Covariance of lift and thrust in still air. Biological Cybernetics 51, 135–139 (1984)CrossRefGoogle Scholar
  37. 37.
    Heide, G., Götz, K.G.: Optomotor control of course and altitude in Drosophila is achieved by at least three pairs of flight steering muscles. The Journal of Experimental Biology 199, 1711–1726 (1996)Google Scholar
  38. 38.
    Heisenberg, M., Wolf, R.: Reafferent control of optomotor yaw torque in Drosophila melanogaster. Journal of Comparative Physiology A 163, 373–388 (1988)CrossRefGoogle Scholar
  39. 39.
    Kaiser, W., Liske, E.: Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. Journal of Comparative Physiology 80, 391–408 (1974)CrossRefGoogle Scholar
  40. 40.
    Hesselberg, T., Lehmann, F.-O.: Turning behaviour depends on frictional damping in the fruit fly Drosophila. The Journal of Experimental Biology 210, 4319–4334 (2007)CrossRefGoogle Scholar
  41. 41.
    Schilstra, C., van Hateren, J.H.: Blowfly flight and optic flow I. Thorax kinematics and flight dynamics. The Journal of Experimental Biology 202, 1481–1490 (1999)Google Scholar
  42. 42.
    Egelhaaf, M., Borst, A.: Is there a separate control system mediating a “centering response” in honeybees. Naturwissenschaften 79, 221–223 (1992)CrossRefGoogle Scholar
  43. 43.
    Srinivasan, M.V., Lehrer, M., Kirchner, W.H., Zhang, S.W.: Range perception through apparent image speed in freely flying honey bees. Visual Neuroscience 6, 519–535 (1991)CrossRefGoogle Scholar
  44. 44.
    Ennos, A.R.: The kinematics and aerodynamics of the free flight of some Diptera. The Journal of Experimental Biology 142, 49–85 (1989)Google Scholar
  45. 45.
    Hedrick, T.L., Usherwood, J.R., Biewener, A.A.: Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus) II Inertial and aerodynamic reorientation. The Journal of Experimental Biology 210, 1912–1924 (2007)CrossRefGoogle Scholar
  46. 46.
    Ellington, C.P.: The aerodynamics of insect flight VI Lift and power requirements. Philosophical Transactions of the Royal Society of London. Series B 305, 145–181 (1984)CrossRefGoogle Scholar
  47. 47.
    Ramamurti, R., Sandberg, W.C.: A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. The Journal of Experimental Biology 210, 881–896 (2007)CrossRefGoogle Scholar
  48. 48.
    Heisenberg, M., Wolf, R.: Vision in Drosophila. Springer-Verlag, Berlin (1984)Google Scholar
  49. 49.
    Ramamurti, R., Sandberg, W.C.: Computational study of 3-D flapping foil flows 39th Aerospace Sciences Meeting and Exhibit, 605 (2001)Google Scholar
  50. 50.
    David, C.T.: The relationship between body angle and flight speed in free flying Drosophila. Physiological Entomology 3, 191–195 (1978)CrossRefGoogle Scholar
  51. 51.
    Marden, J.H.: Maximum lift production during take-off in flying animals. The Journal of Experimental Biology 130, 235–258 (1987)Google Scholar
  52. 52.
    Roeder, K.D., Treat, A.E.: The detection and evasion of bats by moths. Am Sci 49, 135–148 (1961)Google Scholar
  53. 53.
    Almbro, M., Kullberg, C.: Impaired escape flight ability in butterflies due to low flight muscle ratio prior to hibernation. The Journal of Experimental Biology 211, 24–28 (2008)CrossRefGoogle Scholar
  54. 54.
    Marden, J.H., Fitzhugh, G.H., Wolf, M.R.: From molecules to mating success: Integrative biology of muscle maturation in a dragonfly. American Scientist 38, 528–544 (1998)Google Scholar
  55. 55.
    Barton, B., Ayer, G., Heymann, N., Maughan, D.W., Lehmann, F.-O., Vigoreaux, J.O.: Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin gene. The Journal of Experimental Biology 208, 549–560 (2005)CrossRefGoogle Scholar
  56. 56.
    Norberg, R.A.: Hovering flight of the dragonfly Aeshna juncea L. In: T.Y.-T. Wu, C.J. Brokaw, C. Brennen (eds.) Kinematics and Aerodynamics, vol. 2, pp. 763–781. NY, Plenum Press (1975)Google Scholar
  57. 57.
    Reavis, M.A., Luttges, M.W.: Aerodynamic forces produced by a dragonfly. AIAA Journal 88:0330, 1–13 (1988)Google Scholar
  58. 58.
    Wakeling, J.M., Ellington, C.P.: Dragonfly Flight II. Velocities, accelerations, and kinematics of flapping flight. The Journal of Experimental Biology 200, 557–582 (1997)Google Scholar
  59. 59.
    Usherwood, J.R., Lehmann, F.-O.: Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society, Interface 5, 1303–1307 (2008)CrossRefGoogle Scholar
  60. 60.
    Thomas, A.L.R, Taylor, G.K., Srygley, R.B., Nudds, R.L., Bomphrey, R.J.: Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. The Journal of Experimental Biology 207, 4299–4323 (2004)CrossRefGoogle Scholar
  61. 61.
    Götz, K.G.: Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: W. Nachtigall (ed.) BIONA-report 2 Fischer, Stuttgart (1983)Google Scholar
  62. 62.
    Lehmann, F.-O., Dickinson, M.H.: The production of elevated flight force compromises flight stability in the fruit fly Drosophila. The Journal of Experimental Biology 204, 627–635 (2001)Google Scholar
  63. 63.
    Tu, M.S., Dickinson, M.H.: Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. The Journal of Experimental Biology 192, 207–224 (1994)Google Scholar
  64. 64.
    Lehmann, F.-O., Götz, K.G.: Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster. Journal Comparative Physiology 179, 311–322 (1996)Google Scholar
  65. 65.
    Nalbach, G., Hengstenberg, R.: The halteres of the blowfly Calliphora II Three-dimensional organization of compensatory reactions to real and simulated rotations. Journal Comparative Physiology A 174, 695–708 (1994)Google Scholar
  66. 66.
    Fayyazuddin, A., Dickinson, M.H.: Haltere afferents provide direct, electronic input to a steering motor neuron of the blowfly, Calliphora. Journal of Neuroscience 16, 5225–5232 (1996)Google Scholar
  67. 67.
    Sherman, A., Dickinson, M.H.: A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. The Journal of Experimental Biology 206, 295–302 (2003)CrossRefGoogle Scholar
  68. 68.
    Hengstenberg, R., Sandeman, D.C.: Compensatory head roll in the blowfly Calliphora during flight. Proceedings of the Royal Society of London. Series B 227, 455–482 (1986)Google Scholar
  69. 69.
    Land, M.F., Collett, T.S.: Chasing Behaviour of houseflies (Fannia canicularis). Journal of Comparative Physiology A 89, 331–357 (1974)CrossRefGoogle Scholar
  70. 70.
    Howard, J., Dubs, A., Payne, R.: The dynamics of phototransduction in insects: A comparative study. Journal of Comparative Physiology A 154, 707–718 (1984)CrossRefGoogle Scholar
  71. 71.
    Hardie, C.R., Raghu, P.: Visual transduction in Drosophila. Nature 413, 186–193 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of NeurobiologyUniversity of UlmUlmGermany

Personalised recommendations