Flow Control Using Flapping Wings for an Efficient Low-Speed Micro-Air Vehicle

  • Kevin  D. JonesEmail author
  • Max  F. Platzer


A review is given of the research studies which led to the development of a flapping-wing propelled micro air vehicle which uses two oscillating wings in a biplane arrangement for propulsion and a fixed wing for lift generation. Computational and experimental studies are described which were conducted to obtain quantitative information about the thrust and propulsive efficiency offered by this choice. They included inviscid incompressible panel code as well as viscous Navier-Stokes computations, flow visualizations and flow measurements in water and wind tunnels as well as direct thrust measurements. It is shown that the placement of the fixed wing upstream but closely coupled to the two oscillating wings delays flow separation and therefore offers special advantages for flight operations at the low Reynolds numbers encountered by micro air vehicles.


Vortex Street Inviscid Flow Thrust Generation Fixed Wing Propulsive Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for the support received from Spiro Lekoudis of the Office of Naval Research, with project monitors Peter Majumdar and Edwin Rood, and from Richard Foch, head of the Vehicle Research Section of the Naval Research Laboratory, with project monitors Kevin Ailinger, Jill Dahlburg, and James Kellogg.


  1. 1.
    Betz, A.: Ein Beitrag zur Erklaerung des Segelfluges. Zeitschrift fuer Flugtechnik und Motorluftschiffahrt 3, 269–270 (1912)Google Scholar
  2. 2.
    Betz, A.: Introduction to the Theory of Flow Machines. Pergamon, New York (1966)Google Scholar
  3. 3.
    Birnbaum, W.: Das Ebene Problem des Schlagenden Fluegels. Zeitschrift fuer Angewandte Mathematik und Mechanik 4(4), 277–290 (1924)CrossRefGoogle Scholar
  4. 4.
    Bosch, H.: Interfering airfoils in two-dimensional unsteady incompressible flow. Tech. Rep. 7, AGARD-CP-277 (1977)Google Scholar
  5. 5.
    Chanute, O.: Progress in Flying Machines. Lorenz & Herwig, Long Beach, CA (1976)Google Scholar
  6. 6.
    Dalton, S.: The Miracle of Flight. Firefly Books (1999)Google Scholar
  7. 7.
    Garrick, I.E.: Propulsion of a flapping and oscillating airfoil. Tech. Rep. 567, NACA (1936)Google Scholar
  8. 8.
    Jones, K.D., Bradshaw, C.J., Papadopoulos, J., Platzer, M.F.: Bio-inspired design of flapping-wing micro air vehicles. The Aeronautical Journal of the Royal Aeronautical Society 109(1098), 385–392 (2005)Google Scholar
  9. 9.
    Jones, K.D., Lund, T.C., Platzer, M.F.: Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, vol. 195,  chap. 16: Experimental and Computational Investigation of Flapping Wing Propulsion for Micro Air Vehicles, pp. 307–339. AIAA (2001)Google Scholar
  10. 10.
    Joukowski, N.: On adjoint vortices. Izviestiia 13, 12–25 (1906)Google Scholar
  11. 11.
    Knoller, R.: Die Gesetze des Luftwiderstandes. Flug- und Motortechnik 3(21), 1–7 (1909)Google Scholar
  12. 12.
    Kornbluh, R.D., Low, T.P., Stanford, S.E., Vinande, E., Bonwit, N., Holeman, D., DeLaurier, J.D., Loewen, D., Zdunich, P., MacMaster, M., Bilyk, D.: Flapping-wing propulsion using electroactive polymer artificial muscle actuators, phase 2: Radio controlled flapping-wing testbed. Tech. Rep. ITAD-3470-FR-03-009, SRI International (2002)Google Scholar
  13. 13.
    Kuessner, H.G.: Zusammenfassender Bericht Ueber den Instationaeren Auftrieb von Fluegeln. Luftfahrtforschung 13(14) (1936)Google Scholar
  14. 14.
    Kutta, M.W.: Auftriebskraefte in Stroemenden Fluessigkeiten. Illustr. Aeronautische Mitteilungen (1902)Google Scholar
  15. 15.
    Lilienthal, O.: Der Vogelflug als Grundlage der Fliegekunst, 3 edn. Harenberg Kommunikation, Dortmund (1992)Google Scholar
  16. 16.
    Pang, K.C.: A computer code for unsteady incompressible flow past two airfoils. Master’s thesis, Department of Aeronautics & Astronautics, Naval Postgraduate School (1988)Google Scholar
  17. 17.
    Platzer, M.F., Jones, K.D., Young, J., Lai, J.C.S.: Flapping wing aerodynamics — progress and challenges. AIAA Journal 46(9), 2136–2149 (2008)CrossRefGoogle Scholar
  18. 18.
    Platzer, M.F., Neace, K.S., Pang, K.C.: Aerodynamic analysis of flapping wing propulsion. AIAA-93-0484 (1993)Google Scholar
  19. 19.
    Reynst, F.H.: Pulsating Combustion. Pergamon, New York (1961)Google Scholar
  20. 20.
    Smith, A.M.O., Roberts, H.E.: The jet airplane utilizing boundary layer air for propulsion. Journal of the Aeronautical Sciences (1947)Google Scholar
  21. 21.
    Smith, L.H.: Wake ingestion propulsion benefit. Journal of Propulsion and Power 9(1), 74–82 (1947)CrossRefGoogle Scholar
  22. 22.
    Teng, N.H.: The development of a computer code for the numerical solution of unsteady inviscid and incompressible flow over an airfoil. Master’s thesis, Department of Aeronautics & Astronautics, Naval Postgraduate School (1987)Google Scholar
  23. 23.
    Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep. 496, NACA (1935)Google Scholar
  24. 24.
    Wootton, R.J., Kukalova-Peck, J.: Flight adaptations in palaeozoic palaeoptera. Biological Reviews of the Cambridge Philosophical Society 75(1), 129–167 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations