Advertisement

Flexible Wings and Fluid-Structure Interactions for Micro-Air Vehicles

  • W. ShyyEmail author
  • Y. Lian
  • S.K. Chimakurthi
  • J. Tang
  • C.E.S. Cesnik
  • B. Stanford
  • P.G. Ifju
Chapter

Abstract

Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersect with some of the richest problems in micro-air vehicles (MAVs), including massively unsteady three-dimensional separation, transition in boundary and shear layers, vortical flows, unsteady flight environment, aeroelasticity, and adaptive control being just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. The interplay between flexible structures and aerodynamics motivated by the MAV development is discussed in this chapter. For fixed wings, membrane materials exhibit self-initiated vibration even in a steady free stream which lowers the effective angle of attack of the membrane structure compared to that of the rigid wing. For flapping wings, structural flexibility can enhance leading-edge suction via increasing the effective angle of attack, resulting in higher thrust generation.

Keywords

Lift Coefficient Insect Wing Effective Angle Membrane Wing Thrust Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Air Force Office of Scientific Research’s Multidisciplinary University Research Initiative (MURI) grant and by the Michigan/AFRL (Air Force Research Laboratory)/Boeing Collaborative Center in Aeronautical Sciences.

References

  1. 1.
    Archer, R., Sapuppo, J., Betteridge, D.: Propulsion characteristics of flapping wings. Aeronautical Journal 83(825), 355–371 (1979)Google Scholar
  2. 2.
    Argentina, M., Mahadevan, L.: Fluid-flow-induced flutter of a flag. Proceedings of the National Academy of Science: Applied Mathematics 102(6), 1829–1834 (2005)Google Scholar
  3. 3.
    Breugel V.F., Teoh, E.Z., Lipson, H.: A passively stable flapping hovering micro air vehicle. In: C. Ellington (ed.) Flying Insects and Robots. Springer-Verlag, Switzerland (2008)Google Scholar
  4. 4.
    Chimakurthi, S.K., Tang, J., Palacios, R., Cesnik, C., Shyy, W.: Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper Number 2008-1814 Schaumburg, IL (2008)Google Scholar
  5. 5.
    Combes, S., Daniel, T.: Flexural stiffness in insect wings i. Scaling and the influence of wing venation. Journal of Experimental Biology 206, 2979–2987 (2003)CrossRefGoogle Scholar
  6. 6.
    Combes, S., Daniel, T.: Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth manduca sexta. Journal of Experimental Biology 206, 2999–3006 (2003)CrossRefGoogle Scholar
  7. 7.
    Cubo, J., Casinos, A.: Mechanical properties and chemical composition of avian long bones. European Journal of Morphology 38(2), 112–121 (2000)CrossRefGoogle Scholar
  8. 8.
    DeLaurier, J., Harris, J.: Experimental study of oscillating-wing propulsion. Journal of Aircraft 19(5), 368–373 (1982)CrossRefGoogle Scholar
  9. 9.
    Frampton, K., Goldfarb, M., Monopoli, D., Cveticanin, D.: Passive aeroelastic tailoring for optimal flapping wings. In: T.J. Mueller (ed.) Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, vol. 195, pp. 473–482. Progress in Astronautics and Aeronautics, AIAA New York (2001)Google Scholar
  10. 10.
    Freymuth, P.: Thrust generation by an airfoil in hover modes. Experiments in Fluids 9(1–2), 17–24 (1990)CrossRefGoogle Scholar
  11. 11.
    Galvao, R., Israeli, E., Song, A., Tian, X., Bishop, K., Swartz, S., Breuer, K.: The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics. AIAA Paper Number 2006–2866 (2006).Google Scholar
  12. 12.
    Guglielmini, L., Blondeaux, P.: Propulsive efficiency of oscillating airfoils. European Journal of Mechanics B/Fluids 23(2), 255–278 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hamamoto, M., Ohta, Y., Hara, K., Hisada, T.: Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings. Advanced Robotics 21(1–2), 1–21 (2007)CrossRefGoogle Scholar
  14. 14.
    Heathcote, S., Z., W., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures 24(2), 183–199 (2008)CrossRefGoogle Scholar
  15. 15.
    Hepperle, M.: Aerodynamics of spar and rib structures. MH AeroTools Online Database, available at http://www.mh-aerotools.de/airfoils/ribs.htm, March 2007
  16. 16.
    Ifju, P., Jenkins, A., Ettingers, S., Lian, Y., Shyy, W.: Flexible-wing based micro air vehicles. IEEE Transactions on Robotics 22, 137–146 (2002)Google Scholar
  17. 17.
    Jones K.D., Platzer, F.M.: Flow control using flapping wings for an efficient low-speed micro air vehicle. In: C. Ellington (ed.) Flying Insects and Robots. Springer-Verlag, Switzerland (2008)Google Scholar
  18. 18.
    Lian, Y.: Membrane and adaptively-shaped wings for micro air vehicles. Ph.D. thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Gainsville, Florida (2003)Google Scholar
  19. 19.
    Lian, Y., Shyy, W.: Numerical simulations of membrane wing aerodynamics for micro air vehicle applications. Journal of Aircraft 42(4), 865–873 (2005)CrossRefGoogle Scholar
  20. 20.
    Lian, Y., Shyy, W.: Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA Journal 45(7), 1501–1513 (2007)CrossRefGoogle Scholar
  21. 21.
    Lian, Y., Shyy, W., Viieru, D., Zhang, B.: Membrane wing aerodynamics for micro air vehicles. Progress in Aerospace Sciences 39, 425–465 (2003)CrossRefGoogle Scholar
  22. 22.
    Liani, E., Guo, S., Allegri, G.: Aeroelastic effect on flapping wing performance. 48th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper Number 2007-2412 Honololu, Hawaii (2007)Google Scholar
  23. 23.
    Meirovitch, L.: Fundamentals of Vibrations. McGraw Hill, New York (2001)Google Scholar
  24. 24.
    Muniappan, A., Baskar, V., Duriyanandhan, V.: Lift and thrust characteristics of flapping wing micro air vehicle (mav). 43rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2005-1055 Reno, Nevada (2005)Google Scholar
  25. 25.
    Ormiston, R.: Theoretical and experimental aerodynamics of the sail wing. Journal of Aircraft 8(2), 77–84 (1971)CrossRefGoogle Scholar
  26. 26.
    Sarkar, S., Venkatraman, K.: Numerical simulation of thrust generating flow past a pitching airfoil. Computers and Fluids 35(1), 16–42 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Shimanuki, J., Machida, K.: Structure analysis of the wing of a dragonfly. Proceedings of the SPIE 5852, 671–676 (2005)Google Scholar
  28. 28.
    Shyy, W., Berg, M., Ljungqvist, D.: Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences 35(5), 455–505 (1999)CrossRefGoogle Scholar
  29. 29.
    Shyy, W., Ifju, P., Viieru, D.: Membrane wing-based micro air vehicles. Applied Mechanics Reviews 58(1–6), 283–301 (2005)CrossRefGoogle Scholar
  30. 30.
    Shyy, W., Lian, Y., Tang, J., Liu, H., Trizila, B., Stanford, B., Bernal, L., Cesnik, C., Friedmann, P., Ifju, P.: Computational aerodynamics of low reynolds number plunging, pitching and flexible wings for mav applications. 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2008-523 Reno, Nevada (2008)Google Scholar
  31. 31.
    Shyy, W., Lian, Y., Tang, J., Viieru, D., Liu, H.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press (2008)Google Scholar
  32. 32.
    Singh, B.: Dynamics and aeroelasticity of hover capable flapping wings: Experiments and analysis. Ph.D. thesis, Department of Aerospace Engineering, University of Maryland, College Park, Maryland (2006)Google Scholar
  33. 33.
    Smith, M.J.C.: The effects of flexibility on the aerodynamics of moth wings: Towards the development of flapping-wing technology. 33rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 1995-0743 Reno, Nevada (1995)Google Scholar
  34. 34.
    Song, A., Tian, X., Israeli, E., Galvo, R., Bishop, K., Swartz, S., Breuer, K.: The aero-mechanics of low aspect ratio compliant membrane wings, with applications to animal flight. 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2008-517 Reno, Nevada (2008)Google Scholar
  35. 35.
    Stanford, B., Ifju, P.: Aeroelastic tailoring of fixed membrane wings for micro air vehicles. 49th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper Number 2008-1790 Schaumburg, IL (2008)Google Scholar
  36. 36.
    Stanford, B., Sytsma, M., Albertani, R., Viieru, D., Shyy, W., Ifju, P.: Static aeroelastic model validation of membrane micro air vehicle wings. AIAA Journal 45(12), 2828–2837 (2007)CrossRefGoogle Scholar
  37. 37.
    Stanford B., I.P.A.R., Shyy, W.: Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring. Progress in Aerospace Sciences 44, 258–294 (2008)CrossRefGoogle Scholar
  38. 38.
    Stults, J., Maple, R., Cobb, R., Parker, G.: Computational aeroelastic analysis of a micro air vehicle with experimentally determined modes. 23rd Applied Aerodynamics Conference. AIAA Paper Number 2005-4614 Toronto, Ontario, Canada (2005)Google Scholar
  39. 39.
    Tang, J., Chimakurthi, S.K., Palacios, R., Cesnik, C., Shyy, W.: Fluid-structure interactions of a deformable flapping wing for micro air vehicle applications. 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2008-615 Reno, Nevada (2008)Google Scholar
  40. 40.
    Tang, J., Viieru, D., Shyy, W.: A study of aerodynamics of low reynolds number flexible airfoils. 37th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper Number 2007-4212 Miami, Florida (2007)Google Scholar
  41. 41.
    Tang, J., Zhu, K.: Numerical and experimental study of flow structure of low-aspect ratio wing. Journal of Aircraft 41(5), 1196–1201 (2004)CrossRefGoogle Scholar
  42. 42.
    Toomey, J., Eldredge, J.: Numerical and experimental investigation of the role of flexibility in flapping wing flight. 36th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper Number 2006-3211 San Francisco, California, USA (2006)Google Scholar
  43. 43.
    Waszak, R., Jenkins, N., Ifju, P.: Stability and control properties of an aeroelastic fixed wing micro aerial vehicle. AIAA Paper Number 2001-4005Google Scholar
  44. 44.
    Wills, D., Israeli, E., Persson, P., Drela, M., Peraire, J., Swartz, S.M., Breuer, K.S.: A computational framework for fluid structure interaction in biologically inspired flapping flight. 25th AIAA Applied Aerodynamics Conference. AIAA Paper Number 2007-3803 Miami, Florida (2007)Google Scholar
  45. 45.
    Wootton, J.: Support and deformability in insect wings. Journal of Zoology 193, 447–468 (1981)CrossRefGoogle Scholar
  46. 46.
    Wootton, R.: Springy shells, pliant plates, and minimal motors. abstracting the insect thorax to drive a micro air vehicle. In: C. Ellington (ed.) Flying Insects and Robots. Springer-Verlag, Switzerland (2008)Google Scholar
  47. 47.
    Zhu, Q.: Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA Journal 45(10), 2448–2457 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • W. Shyy
    • 1
    Email author
  • Y. Lian
    • 1
  • S.K. Chimakurthi
    • 1
  • J. Tang
    • 1
  • C.E.S. Cesnik
    • 1
  • B. Stanford
    • 2
  • P.G. Ifju
    • 2
  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainsvilleUSA

Personalised recommendations