Microoptical Artificial Compound Eyes

  • Andreas BrücknerEmail author
  • Jacques Duparré
  • Frank Wippermann
  • Peter Dannberg
  • Andreas Bräuer


The cost–benefit ratio of miniaturized single aperture eyes underlies certain limitations, so that evolution led to the development of multi-aperture eyes in case of tiny creatures like invertebrates. Physical constraints, which also apply for the miniaturized artificial imaging systems, make this natural evolutionary path comprehensible. Shrinking down to a sub-millimeter range, the use of parallel imaging with multi-aperture systems is crucial. In this domain, microoptical design approaches and fabrication techniques are the solution of choice. This technology allows the realization of cost-efficient miniaturized imaging systems with sub-micron precision by means of photolithography and replication. The approaches proposed here are mainly inspired by insect vision in nature, although they are bound to planar substrates.


Microlens Array Acceptance Angle Lens Array Pitch Difference Sampling Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Sylke Kleinle, Andre Matthes, Antje Oelschläger, and Simone Thau from the Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena, for their contributions to the fabrication of the various types of artificial apposition compound eye objectives using microoptics technology. Special thanks is dedicated to Reinhard Völkel from SUSS MicroOptics SA (Neuchâtel, Switzerland) for his inspiring previous work and helpful discussions about bio-inspired imaging. The experience of Martin Eisner (also SUSS MicroOptics) in aligned stacking of microlens array wafers finally led to the realization of the cluster eye. We are furthermore very thankful for the help we got from our colleagues from the Institute of Microtechnology (IMT) of the University of Neuchâtel, Switzerland, especially Toralf Scharf who took very important steps in the fabrication of the lens- and aperture arrays of the cluster eye. The presented work was partly funded by the German Federal Ministry of Education and Research (BMBF) within the project “Extremely compact imaging systems for automotive applications” (FKZ: 13N8796).


  1. 1.
    Barlow, H.B.: The size of ommatidia in apposition eyes. Journal of Experimental Biology 29, 667–674 (1952)Google Scholar
  2. 2.
    Borrelli, N.F., Bellman, R.H., Durbin, J.A., Lama, W.: Imaging and radiometric properties of microlens arrays. Applied Optics 30(25), 3633–3642 (1991)CrossRefGoogle Scholar
  3. 3.
    Brückner, A., Duparré, J., Dannberg, P., Bräuer, A., Tünnermann, A.: Artificial neural superposition eye. Optics Express 15(19), 11,922–11,933 (2007)Google Scholar
  4. 4.
    Dannberg, P., Mann, G., Wagner, L., Bräuer, A.: Polymer UV-molding for micro-optical systems and O/E- integration.In: S.H. Lee, E.G. Johnson (eds.) Proc. of Micromachining for Micro–Optics, vol. SPIE 4179, 137–145 (2000)Google Scholar
  5. 5.
    Duparré, J., Dannberg, P., Schreiber, P., Bräuer, A., Tünnermann, A.: Artificial apposition compound eye fabricated by micro-optics technology. Applied Optics 43(22), 4303–4310 (2004)CrossRefGoogle Scholar
  6. 6.
    Duparré, J., Dannberg, P., Schreiber, P., Bräuer, A., Tünnermann, A.: Thin compound eye camera. Applied Optics 44(15), 2949–2956 (2005)CrossRefGoogle Scholar
  7. 7.
    Duparré, J., Schreiber, P., Matthes, A., Pshenay-Severin, E., Bräuer, A., Tünnermann, A., Völkel, R., Eisner, M., Scharf, T.: Microoptical telescope compound eye. Optics Express 13(3), 889–903 (2005)CrossRefGoogle Scholar
  8. 8.
    Duparré, J., Wippermann, F., Dannberg, P., Reimann, A.: Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Optics Express 13(26), 10,539–10,551 (2005)Google Scholar
  9. 9.
    Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions: Biological Sciences. The Royalty Society is the publisher, see: Series B 337, 283–294 (1992)CrossRefGoogle Scholar
  10. 10.
    Gabor, D.: Improvements in or relating to optical systems composed of lenticules. Pat. UK 541,753 (1940)Google Scholar
  11. 11.
    Goetz, K.G.: Die optischen Uebertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965)CrossRefGoogle Scholar
  12. 12.
    Hamanaka, K., Koshi, H.: An artificial compound eye using a microlens array and its application to scale-invariant processing. Optical Review 3(4), 264–268 (1996)CrossRefGoogle Scholar
  13. 13.
    Hardie, R.: Functional organization of the fly retina. Progress in Sensory Physiology 5, 1–79 (1985)MathSciNetGoogle Scholar
  14. 14.
    Hembd-Sölner, C., Stevens, R.F., Hutley, M.C.: Imaging properties of the Gabor superlens. Journal of Optics A: Pure and Applied Optics. 1, 94–102 (1999)CrossRefGoogle Scholar
  15. 15.
    Horridge, G.A.: The compound eye of insects. Scientific American 237, 108–120 (1977)Google Scholar
  16. 16.
    Horridge, G.A.: The separation of visual axes in apposition compound eyes. Philosophical transactions of the Royal Society of London. Series B 285, 1–59 (1978)CrossRefGoogle Scholar
  17. 17.
    Hoshino, K., Mura, F., Shimoyama, I.: A One–chip Scanning Retina with an Integrated Micromechanical Scanning Actuator. Journal of Microelectromechanical System 10(4), 492–497 (2001)CrossRefGoogle Scholar
  18. 18.
    Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, J.U., Fröhlich, L., Buestrich, R., Popall, M., Streppel, U., Dannberg, P., Wächter, C., Bräuer, A.: Inorganic-Organic Hybrid Materials for Application in Optical Devices. Thin Solid Films 442, 194–200 (2003)CrossRefGoogle Scholar
  19. 19.
    Hugle, W.B., Daendliker, R., Herzig, H.P.: Lens array photolithography. Pat. US 8,114,732 (1993)Google Scholar
  20. 20.
    Hutley, M.C.: Integral photography, superlenses and the moiré magnifier. In: M.C. Hutley (ed.) Digest of Top. Meet. on Microlens Arrays at NPL, Teddington, vol. EOS 2, pp. 72–75 (1993)Google Scholar
  21. 21.
    Jeong, K., Kim, J., Lee, L.P.: Polymeric synthesis of biomimetic artificial compound eyes. Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 05), pp. 1110–1114 (2005)Google Scholar
  22. 22.
    Kamal, H., Völkel, R., Alda, J.: Properties of moiré magnifiers. Optical Engineering 37(11), 3007–3014 (1998)CrossRefGoogle Scholar
  23. 23.
    Kawazu, M., Ogura, Y.: Application of gradient-index fiber arrays to copying machines. Applied Optics 19(7), 1105–1112 (1980)CrossRefGoogle Scholar
  24. 24.
    Kirschfeld, K.: The resolution of lens and compound eyes. Neural Principles in Vision pp. 354–370 (1976)Google Scholar
  25. 25.
    Kirschfeld, K., Franceschini, N.: Optical characteristics of ommatidia in the complex eye of musca. Kybernetik 5, 47–52 (1968)CrossRefGoogle Scholar
  26. 26.
    Kitamura, Y., Shogenji, R., Yamada, K., Miyatake, S., Miyamoto, M., Morimoto, T., Masaki, Y., Kondou, N., Miyazaki, D., Tanida, J., Ichioka, Y.: Reconstruction of a high–resolution image on a compound–eye image–capturing system. Applied Optics 43(8), 1719–1727 (2004)CrossRefGoogle Scholar
  27. 27.
    Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)CrossRefGoogle Scholar
  28. 28.
    Land, M.F.: Compound eyes: Old and new optical mechanisms. Nature 287, 681–686 (1980)CrossRefGoogle Scholar
  29. 29.
    Land, M.F.: Variations in Structure and Design of Compound Eyes. In: D. Stavenga, R.C. Hardie (eds.) Facets of Vision, Chap. 5, pp. 90–111. Springer (1989)Google Scholar
  30. 30.
    Land, M.F., Burton, F., Meyer-Rochow, V.: The Optical Geometry of Euphausiid Eyes. Journal of Comparative Physiology A 130(1), 49–62 (1979)CrossRefGoogle Scholar
  31. 31.
    Land, M.F., Nilsson, D.E.: Animal Eyes. Oxford Animal Biology Series. Oxford University Press, Oxford (2002)Google Scholar
  32. 32.
    Lee, L.P., Szema, R.: Inspirations from biological optics for advanced photonic systems. Science 310(5751), 1148–1150 (2005)CrossRefGoogle Scholar
  33. 33.
    Lohmann, A.W.: Scaling laws for lens systems. Applied Optics 28(23), 4996–4998 (1989)CrossRefGoogle Scholar
  34. 34.
    McIntyre, P., Caveney, S.: Graded index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philosophical Transactions of the Royal Society of London. Series B 311, 237–269 (1985)CrossRefGoogle Scholar
  35. 35.
    Nakayama, K.: Biological image motion processing: a review. Vision Research 25(5), 625–660 (1985)MathSciNetGoogle Scholar
  36. 36.
    Ogata, S., Ishida, J., Sasano, T.: Optical sensor array in an artificial compound eye. Optical Engineering 33(11), 3649–3655 (1994)CrossRefGoogle Scholar
  37. 37.
    Popovich, Z.D., Sprague, R.A., Conell, G.A.N.: Technique for monolithic fabrication of microlens arrays. Applied Optics 27(7), 1281–1284 (1988)CrossRefGoogle Scholar
  38. 38.
    Radtke, D., Duparré, J., Zeitner, U., Tünnermann, A.: Laser lithographic fabrication and characterization of a spherical artificial compound eye. Optics Express 15, 3067–3077 (2007)CrossRefGoogle Scholar
  39. 39.
    Sanders, J.S. (ed.): Selected Papers on Natural and Artificial Compound Eye Sensors, 122 edn. SPIE Milestone Series. SPIE Optical Engineering Press, Bellingham (1996)Google Scholar
  40. 40.
    Sanders, J.S., Halford, C.E.: Design and analysis of apposition compound eye optical sensors. Optical Engineering 34(1), 222–235 (1995)CrossRefGoogle Scholar
  41. 41.
    Smith, W.J.: Modern Optical Engineering: The Design of Optical Systems, 2 edn. McGraw–Hill, New York (1990)Google Scholar
  42. 42.
    Snyder, A.W.: Physics of Vision in Compound Eyes. Handbook of sensory physiology, pp. 225–313. Springer (1977)Google Scholar
  43. 43.
    Snyder, A.W., Stavenga, D.G., Laughlin, S.B.: Spatial Information Capacity of Compound Eyes. Journal of Comparative Physiology A 116, 183–207 (1977)CrossRefGoogle Scholar
  44. 44.
    Stevens, R.F.: Optical inspection of periodic structures using lens arrays and moiré magnification. Imaging Science Journal 47, 173–179 (1999)Google Scholar
  45. 45.
    Thorson, J.: Small-signal analysis of a visual reflex in the locust. Kybernetik 3(2), 41–66 (1966)CrossRefGoogle Scholar
  46. 46.
    Völkel, R., Eisner, M., Weible, K.J.: Miniaturized imaging systems. Microelectronic Engineering 6768, 461–472 (2003)CrossRefGoogle Scholar
  47. 47.
    Völkel, R., Wallstab, S.: Flachbauendes Bilderfassungssystem. Pat. DE 199 17 890A1 (1999)Google Scholar
  48. 48.
    Wippermann, F., Duparré, J., Schreiber, P., Dannberg, P.: Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective. In: L. Mazuray, R. Wartmann (eds.) Proceedings of Optical Design and Engineering II, vol. 5962, pp. 59,622C–1–59,622C–11 (2005)Google Scholar
  49. 49.
    Yamada, K., Tanida, J., Yu, W., Miyatake, S., Ishida, K., Miyazaki, D., Ichioka, Y.: Fabrication off diffractive microlens array for opto-electronic hybrid information system. Proceedings of Diffractive Optics’ 99, pp. 52–53. EOS (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Brückner
    • 1
    Email author
  • Jacques Duparré
    • 1
  • Frank Wippermann
    • 1
  • Peter Dannberg
    • 1
  • Andreas Bräuer
    • 1
  1. 1.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations