Experimental Approaches Toward a Functional Understanding of Insect Flight Control

  • Steven N. FryEmail author


This chapter describes experimental approaches exploring free-flight control in insects at various levels, in view of the biomimetic design principles they may offer for MAVs. Low-level flight control is addressed with recent studies of the aerodynamics of free-flight control in the fruit fly. The ability to measure instantaneous kinematics and aerodynamic forces in free-flying insects provides a basis for the design of flapping airfoil MAVs. Intermediate-level flight control is addressed by presenting a behavioral system identification approach. In this work, the motion processing and speed control pathways of the fruit fly were reverse engineered based on transient visual flight speed responses, providing a quantitative control model suited for biomimetic implementation. Finally, high-level flight control is addressed with the analysis of landmark-based goal navigation, for which bees combine and adapt basic visuomotor reflexes in a context-dependent way. Adaptive control strategies are also likely suited for MAVs that need to perform in complex and unpredictable environments. The integrative analysis of flight control mechanisms in free-flying insects promises to move beyond isolated emulations of biological subsystems toward a generalized and rigorous approach.


Aerodynamic Force Flight Control Flight Speed Free Flight Wing Kinematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I wish to thank to reviewers for useful comments, Chauncey Grätzel for advice on the writing, Jan Bartussek, Vasco Medici and Nicola Rohrseitz for useful comments and discussions. The work described in this chapter was funded by the following institutions: Human Frontiers Science Program (HFSP), Swiss Federal Institute of Technology (ETH) Zurich; Swiss National Science Foundation (SNSF), University of Zurich and Volkswagen Foundation.


  1. 1.
    Anderson, A.: A model for landmark learning in the honey-bee. Journal of Comparative Physiology A 114, 335–355 (1977)CrossRefGoogle Scholar
  2. 2.
    Baird, E., Srinivasan, M.V., Zhang, S., Cowling, A.: Visual control of flight speed in honeybees. Journal of Experimental Biology 208(20), 3895–3905 (2005)CrossRefGoogle Scholar
  3. 3.
    Boeddeker, N., Kern, R., Egelhaaf, M.: Chasing a dummy target: Smooth pursuit and velocity control in male blowflies. Proceedings of the Royal Society of London Series B Biological Sciences 270(1513), 393–399 (2003)Google Scholar
  4. 4.
    Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences 12(8), 297–306 (1989)CrossRefGoogle Scholar
  5. 5.
    Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A 188(6), 419–37 (2002)CrossRefGoogle Scholar
  6. 6.
    Buchner, E.: Behavioral analysis of spatial vision in insects. In: M.A. Ali (ed.) Photoreception and Vision in Invertebrates, pp. 561–621. Plenum Press, New York (1984)Google Scholar
  7. 7.
    Cartwright, B.A., Collett, T.S.: How honey bees use landmarks to guide their return to a food source. Nature 295, 560–564 (1982)CrossRefGoogle Scholar
  8. 8.
    Cartwright, B.A., Collett, T.S.: Landmark learning in bees: Experiments and models. Journal of Comparative Physiology A 151, 521–543 (1983)CrossRefGoogle Scholar
  9. 9.
    Chittka, L., Kunze, J., Shipman, C., Buchmann, S.L.: The significance of landmarks for path integration in homing honeybee foragers. Naturwissenschaften 82, 341–343 (1995)CrossRefGoogle Scholar
  10. 10.
    Collett, T.S., Graham, P., Harris, R.A., Hempel de Ibarra, N.: Navigational memories in ants and bees: Memory retrieval when selecting and following routes. Advances in the Study of Behavior 36, 123–172 (2006)CrossRefGoogle Scholar
  11. 11.
    Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly Syritta pipiens L. Journal of Comparative Physiology 99, 1–66 (1975)CrossRefGoogle Scholar
  12. 12.
    Collett, T.S., Nalbach, H.O., Wagner, H.: Visual stabilization in arthropods. Reviews of Oculomotor Research 5, 239–63 (1993)Google Scholar
  13. 13.
    Collett, T.S., Zeil, J.: Places and landmarks: An arthropod perspective. In: S. Healy (ed.) Spatial Representation in Animals, pp. 18–53. Oxford University Press, Oxford, New York (1998)Google Scholar
  14. 14.
    Datteri, E., Tamburrini, G.: Biorobotic experiments for the discovery of biological mechanisms. Philosophy of Science 74(3), 409–430 (2007)CrossRefGoogle Scholar
  15. 15.
    David, C.T.: Compensation for height in the control of groundspeed by Drosophila in a new, ’barber’s pole’ wind tunnel. Journal of Comparative Physiology A 147, 485–493 (1982)CrossRefGoogle Scholar
  16. 16.
    Deng, X.Y., Schenato, L., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part II - Flight control design. IEEE Transactions on Robotics 22(4), 789–803 (2006)CrossRefGoogle Scholar
  17. 17.
    Deng, X.Y., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part I - System modeling. IEEE Transactions on Robotics 22(4), 776–788 (2006)CrossRefGoogle Scholar
  18. 18.
    Dickinson, M.H.: Bionics: Biological insight into mechanical design. Proceedings of the National Academy of Sciences of the United Statesof America 96(25), 14, 208–9. (1999)Google Scholar
  19. 19.
    Dickinson, M.H.: Insect flight. Current Biology 16(9), R309–R314 (2006)CrossRefGoogle Scholar
  20. 20.
    Dickson, W.B., Dickinson, M.H.: The effect of advance ratio on the aerodynamics of revolving wings. Journal of Experimental Biology 207(24), 4269–4281 (2004)CrossRefGoogle Scholar
  21. 21.
    Egelhaaf, M., Kern, R.: Vision in flying insects. Current Opinion in Neurobiology 12(6), 699–706 (2002)CrossRefGoogle Scholar
  22. 22.
    Ellington, C.P.: The aerodynamics of hovering insect flight. Philosophical Transactions of the Royal Society B: Biological Sciences 305, 1–181 (1984)CrossRefGoogle Scholar
  23. 23.
    Fermi, G., Reichardt, W.: Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2, 15–28 (1963)CrossRefGoogle Scholar
  24. 24.
    Franceschini, N., Ruffier, F., Serres, J.: A bio-inspired flying robot sheds light on insect piloting abilities. Current Biology 17(4), 329–335 (2007)CrossRefGoogle Scholar
  25. 25.
    Franz, M.O., Schöllkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did i take that snapshot? Scene based homing by image matching. Biological Cybernetics 79, 191–202 (1998)zbMATHCrossRefGoogle Scholar
  26. 26.
    Fry, S.N., Bichsel, M., Müller, P., Robert, D.: Tracking of flying insects using pan-tilt cameras. Journal of Neuroscience Methods 101(1), 59–67 (2000)CrossRefGoogle Scholar
  27. 27.
    Fry, S.N., Rohrseitz, N., Straw, A.D., Dickinson, M.H.: TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies. Journal of Neuroscience Methods 171(1), 110–117 (2008)CrossRefGoogle Scholar
  28. 28.
    Fry, S.N., Rohrseitz, N., Straw, A.D., Dickinson, M.H.: Visual control of flight speed in Drosophila melanogaster. Journal of Experimental Biology 212, 1120–1130 (2009)Google Scholar
  29. 29.
    Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in Drosophila. Science 300(5618), 495–498 (2003)CrossRefGoogle Scholar
  30. 30.
    Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology 208(12), 2303–2318 (2005)CrossRefGoogle Scholar
  31. 31.
    Fry, S.N., Wehner, R.: Honey bees store landmarks in an egocentric frame of reference. Journal of Comparative Physiology A 187(12), 1009–1016 (2002)CrossRefGoogle Scholar
  32. 32.
    Fry, S.N., Wehner, R.: Look and turn: Landmark-based goal navigation in honey bees. Journal of Experimental Biology 208(20), 3945–3955 (2005)CrossRefGoogle Scholar
  33. 33.
    Gibson, J.J.: The visual perception of objective motion and subjective movement. 1954. Psychological Review 101(2), 318–23 (1994)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Götz, K.G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964)CrossRefGoogle Scholar
  35. 35.
    Graham, P., Fauria, K., Collett, T.S.: The influence of beacon-aiming on the routes of wood ants. Journal of Experimental Biology 206(3), 535–541 (2003)CrossRefGoogle Scholar
  36. 36.
    Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 11b, 513–524 (1956)Google Scholar
  37. 37.
    Hausen, K.: Decoding of retinal image flow in insects. Reviews of Oculomotor Research 5, 203–35 (1993)Google Scholar
  38. 38.
    Jeong, K.H., Kim, J., Lee, L.P.: Biologically inspired artificial compound eyes. Science 312(5773), 557–561 (2006)CrossRefGoogle Scholar
  39. 39.
    Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30, 39–64 (2000)CrossRefGoogle Scholar
  40. 40.
    Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). Journal of Comparative Physiology A 89, 331–357 (1974)CrossRefGoogle Scholar
  41. 41.
    Liu, S.C., Usseglio-Viretta, A.: Fly-like visuo-motor responses on a robot using aVLSI motion chips. Biological Cybernetics 85(6), 449–457 (2001)CrossRefGoogle Scholar
  42. 42.
    Möller, R.: Insect visual homing strategies in a robot with analog processing. Biological Cybernetics 83, 231–243 (2000)zbMATHCrossRefGoogle Scholar
  43. 43.
    Möller, R.: Do insects use templates or parameters for landmark navigation? Journal of Theoretical Biology 210, 33–45 (2001)CrossRefGoogle Scholar
  44. 44.
    Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology 205(8), 1087–1096 (2002)Google Scholar
  45. 45.
    Schuster, S., Strauss, R., Götz, K.G.: Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances. Current Biology 12(18), 1591–4 (2002)CrossRefGoogle Scholar
  46. 46.
    Srinivasan, M.V., Zhang, S.: Visual motor computations in insects. Annual Review of Neuroscience 27, 679–96 (2004)CrossRefGoogle Scholar
  47. 47.
    Srinivasan, M.V., Zhang, S., Lehrer, M., Collett, T.S.: Honeybee navigation en route to the goal: Visual flight control and odometry. Journal of Experimental Biology 199(1), 237–44 (1996)Google Scholar
  48. 48.
    Tanaka, K., Kawachi, K.: Response characteristics of visual altitude control system in Bombus terrestris. Journal of Experimental Biology 209(22), 4533–4545 (2006)CrossRefGoogle Scholar
  49. 49.
    Taylor, G.K., Bacic, M., Bomphrey, R.J., Carruthers, A.C., Gillies, J., Walker, S.M., Thomas, A.L.R.: New experimental approaches to the biology of flight control systems. Journal of Experimental Biology 211(2), 258–266 (2008)CrossRefGoogle Scholar
  50. 50.
    Taylor, G.K., Krapp, H.G.: Sensory systems and flight stability: What do insects measure and why? Advances in Insect Physiology 34, 231–316 (2008)CrossRefGoogle Scholar
  51. 51.
    Taylor, G.K., Żbikowski, R.: Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. Journal of the Royal Society Interface 2(3), 197–221 (2005)CrossRefGoogle Scholar
  52. 52.
    Tinbergen, N.: über die Orientierung des Bienenwolfs (Philantus triangulum Fabr.). Zeitschrift für Vergleichende Physiologie 16, 305–334 (1932)Google Scholar
  53. 53.
    Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17(1), 47 – 89 (2005)CrossRefGoogle Scholar
  54. 54.
    Webb, B.: Validating biorobotic models. Journal of Neural Engineering 3(3), R25–R35 (2006)CrossRefGoogle Scholar
  55. 55.
    Wehner, R.: Spatial vision in arthropods. Handbook of Sensory Physiology, vol. VII/6C, pp. 287–616. Springer, Berlin, Heidelberg, New York, Tokyo (1981)Google Scholar
  56. 56.
    Wehner, R.: Arthropods. In: F. Papi (ed.) Animal homing, pp. 45–144. Chapman & Hall (1992)Google Scholar
  57. 57.
    Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology 59, 169–230 (1973)Google Scholar
  58. 58.
    Wood, R.J.: Design, fabrication, and analysis of a 3DOF, 3 cm flapping-wing MAV. Intelligent Robots and Systems, 2007. IROS 2007, pp. 1576–1581 (2007)Google Scholar
  59. 59.
    Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. Robotics, IEEE Transactions on 24(2), 341–347 (2008)CrossRefGoogle Scholar
  60. 60.
    Wu, W., Shenato, L., Wood, R.J., Fearing, R.S.: Biomimetic sensor suite for flight control of a micromechanical flying insect: Design and experimental results. Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA 2003), vol. 1, pp. 1146–1151. IEEE Press, Piscataway, NJ (2003)Google Scholar
  61. 61.
    Wu, W.C., Wood, R.J., Fearing, R.S.: Halteres for the micromechanical flying insect. Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002 1, 60–65 (2002)Google Scholar
  62. 62.
    Zufferey, J.C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Transactions on Robotics 22(1), 137–146 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich; Institute of Robotics and Intelligent systems, ETH ZurichZurichSwitzerland

Personalised recommendations