Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: Saitta, L. (ed.) Machine Learning: Proceedings of the Thirteenth International Conference, pp. 275–283. Morgan Kaufmann, San Francisco (1996)
Google Scholar
Witten, I., Frank, E.: Data mining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco (2000)
Google Scholar
Kong, E.B., Dietterich, T.G.: Error-correcting output coding corrects bias and variance. In: Proceedings of the 12th International Conference on Machine Learning, pp. 313–321. Morgan Kaufmann, San Francisco (1995)
Google Scholar
Domingos, P.: A unified bias-variance decomposition and its applications. In: International Conference on Machine Learning, ICML 2000, pp. 231–238 (2000)
Google Scholar
Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1-2), 105–139 (1999)
CrossRef
Google Scholar
James, G.: Variance and bias for general loss functions. Machine Learning 51, 115–135 (2003)
CrossRef
MATH
Google Scholar
Valentini, G., Dietterich, T.G.: Bias-variance analysis and ensembles of svm. In: Multiple Classifier Systems: Third International Workshop, pp. 222–231 (2002)
Google Scholar
Valentini, G., Dietterich, T.G.: Low bias bagged support vector machines. In: International Conference on Machine Learning, ICML 2003 (2003)
Google Scholar
Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Machine Learning 40(2), 159–196 (2000)
CrossRef
Google Scholar
Webb, G.I., Conilione, P.: Estimating bias and variance from data (unpublished manuscript) (2002),
http://www.csse.monash.edu.au/~webb/files/webbconilione06.pdf
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees, pp. 43–49. Wadsworth International Group, Belmont (1984)
MATH
Google Scholar
Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering 5(6), 914–925 (1993); Special issue on Learning and Discovery in Knowledge-Based Databases.
CrossRef
Google Scholar
Dwyer, K., Holte, R.C.: Decision tree instability and active learning. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 128–139. Springer, Heidelberg (2007)
CrossRef
Google Scholar