Skip to main content

A Self-stabilizing \(\frac{2}{3}\)-Approximation Algorithm for the Maximum Matching Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5340))

Abstract

The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal (\(\frac{1}{2}\)-approximation) matching in a general graph, as well as computing a \(\frac{2}{3}\)-approximation on more specific graph types. In the following we present the first self-stabilizing algorithm for finding a \(\frac{2}{3}\)-approximation to the maximum matching problem in a general graph. We show that our new algorithm stabilizes in at most exponential time under a distributed adversarial daemon, and O(n 2) rounds under a distributed fair daemon, where n is the number of nodes in the graph.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: ICDCS 2003: Proceedings of the 23rd International Conference on Distributed Computing Systems, Washington, DC, USA, pp. 20–26. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  2. Danturi, P., Nesterenko, M., Tixeuil, S.: Self-stabilizing philosophers with generic conflicts. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 214–230. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Ghosh, S., Gupta, A., Karaata, M.H., Pemmaraju, S.V.: Self-stabilizing dynamic programming algorithms on trees. In: Proceedings of the Second Workshop on Self-Stabilizing Systems (WSSS 1995), Las Vegas, pp. 11.1–11.15 (1995)

    Google Scholar 

  6. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS 2003: Proceedings of the 17th International Symposium on Parallel and Distributed Processing, Washington, DC, USA, p. 162.2. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  7. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Trevisan, V.: Distance-k knowledge in self-stabilizing algorithms. Theor. Comput. Sci. 399(1-2), 118–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: PDPTA 2006: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications & Conference on Real-Time Computing Systems and Applications, vol.  2, pp. 797–803. CSREA Press (2006)

    Google Scholar 

  9. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assumption. In: ICDCS 2007: Proceedings of the International Conference on Distributed Computing Systems. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  11. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time O(m). Inf. Process. Lett. 80(5), 221–223 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MATH  Google Scholar 

  13. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 96–108. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6), 271–272 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manne, F., Mjelde, M., Pilard, L., Tixeuil, S. (2008). A Self-stabilizing \(\frac{2}{3}\)-Approximation Algorithm for the Maximum Matching Problem. In: Kulkarni, S., Schiper, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2008. Lecture Notes in Computer Science, vol 5340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89335-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89335-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89334-9

  • Online ISBN: 978-3-540-89335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics