On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography

  • Donny Cheung
  • Dmitri Maslov
  • Jimson Mathew
  • Dhiraj K. Pradhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5106)

Abstract

We consider a quantum polynomial-time algorithm which solves the discrete logarithm problem for points on elliptic curves over GF(2m). We improve over earlier algorithms by constructing an efficient circuit for multiplying elements of binary finite fields and by representing elliptic curve points using a technique based on projective coordinates. The depth of our proposed implementation is O(m2), which is an improvement over the previous bound of O(m3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing 26, 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  4. 4.
    Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. IEEE Symposium on Foundations of Computer Science 41, 526–536 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Meter, R.V., Itoh, K.M.: Fast quantum modular exponentiation. Physical Review A 71, 052320 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Certicom. Certicom announces elliptic curve cryptography challenge winner. Certicom press release (2004)Google Scholar
  7. 7.
  8. 8.
    Agnew, G.B., Mullin, R.C., Vanstone, S.A.: An implementation of elliptic curve cryptosystems over GF(2155). IEEE Journal on Selected Areas in Communications 11(5), 804–813 (1993)CrossRefGoogle Scholar
  9. 9.
    Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Information and Computation 3, 317–344 (2003)MathSciNetMATHGoogle Scholar
  10. 10.
    Jozsa, R.: Quantum algorithms and the Fourier transform. Proc. R. Soc. Lond. A 454, 323–337 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Beauregard, S., Brassard, G., Fernandez, J.M.: Quantum arithmetic on Galois fields. arXiv:quant-ph/0301163 (2003)Google Scholar
  12. 12.
    Mastrovito, E.D.: VLSI designs for multiplication over finite fields GF(2m). In: Proceedings of the Sixth Symposium on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes, vol. 6, pp. 297–309 (1988)Google Scholar
  13. 13.
    Toffoli, T.: Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980)Google Scholar
  14. 14.
    Pradhan, D.K.: A theory of Galois switching functions. IEEE Transactions on Computers 27, 239–248 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Reyhani-Masoleh, A., Hasan, M.A.: Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m). IEEE Transactions on Computers 53, 945–959 (2004)CrossRefGoogle Scholar
  16. 16.
    Mastrovito, E.D.: VLSI Architectures for Computation in Galois Fields. PhD Thesis, Linkoping University, Linkoping, Sweden (1991)Google Scholar
  17. 17.
    Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39, 1639–1646 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Maslov, D.: Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite neighbor quantum architectures. Physical Review A 76, 052310 (2007)CrossRefGoogle Scholar
  19. 19.
    Kaye, P.: Optimized quantum implementation of elliptic curve arithmetic over binary fields. Quantum Information and Computation 5, 474–491 (2005)MathSciNetMATHGoogle Scholar
  20. 20.
    Hankerson, D., López Hernandez, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Proceedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems, vol. 2, pp. 1–24 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Donny Cheung
    • 1
  • Dmitri Maslov
    • 2
  • Jimson Mathew
    • 3
  • Dhiraj K. Pradhan
    • 3
  1. 1.Department of Computer Science, and Institute for Quantum Information ScienceUniversity of CalgaryCalgaryCanada
  2. 2.Department of Combinatorics and Optimization, and Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  3. 3.Department of Computer ScienceUniversity of BristolBristolUK

Personalised recommendations