Improved Constructions of Quantum Automata

  • Andris Ambainis
  • Nikolajs Nahimovs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5106)

Abstract

We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use \(\frac{4}{\epsilon} \log 2p + O(1)\) states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of logp than the previously known construction of [2].

Similarly to [2], our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some preliminary results in this direction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M., Iwaniec, H., Komlos, J., Pintz, J., Szemeredi, E.: Construction of a thin set with small Fourier coefficients. Bulletin of the London Mathematical Society 22, 583–590 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th IEEE Conference on Foundations of Computer Science, pp. 332–341 (1998) (quant-ph/9802062) Google Scholar
  3. 3.
    Ambainis, A., Kikusts, A., Valdats, M.: On the Class of Languages Recognizable by 1-Way Quantum Finite Automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. Journal of the ACM 49(4), 496–511 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bertoni, A., Mereghetti, C., Palano, B.: Quantum Computing: 1-Way Quantum Automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bourgain, J.: Estimates on exponential sums related to Diffie-Hellman distributions. Geometric and Functional Analysis 15, 1–34 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ciamarra, M.: Quantum Reversibility and a New Model of Quantum Automaton. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 376–379. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of the 38th IEEE Conference on Foundations of Computer Science, pp. 66–75 (1997)Google Scholar
  9. 9.
    Le Gall, F.: Exponential separation of quantum and classical online space complexity. In: Proceedings of SPAA 2006, pp. 67–73 (2006)Google Scholar
  10. 10.
    Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1-2), 275–306 (2000) (quant-ph/9707031)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  12. 12.
    Razborov, A., Szemeredi, E., Wigderson, A.: Constructing small sets that are uniform in arithmetic progressions. Combinatorics, Probability and Computing 2, 513–518 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andris Ambainis
    • 1
  • Nikolajs Nahimovs
    • 1
  1. 1.Department of Computer ScienceUniversity of LatviaRigaLatvia

Personalised recommendations