Architecture of a Quantum Multicomputer Implementing Shor’s Algorithm

  • Rodney Van Meter
  • W. J. Munro
  • Kae Nemoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5106)


We have created the architecture of a quantum multicomputer and analyzed its performance for running Shor’s algorithm for factoring large numbers. In this paper, we combine fault tolerance techniques with performance goals for our architecture, which uses a linear interconnect and six logical qubits per node. Our performance target of factoring a 1,024-bit number in one month requires teleporting 6.2 logical qubits per second on each link in the system, which translates to 3,300 physical teleportations per second on each link. Starting from a Bell state with fidelity F = 0.638, as a qubus-based cavity QED interconnect might generate with a qubit-to-qubit loss of 3.4dB, about 1.5 million physical entanglement attempts per second are enough to reach this level of performance. Our analysis suggests that systems capable of solving classically intractable problems are well within reach; once basic technological hurdles are overcome, the multicomputer architecture supports rapid scaling to very large systems.


Physical Review Letter Linear Network Modular Exponentiation Quantum Error Correction Logical Qubits 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grover, L.K.: Quantum telecomputation (April 1997),
  2. 2.
    Cirac, J.I., Ekert, A., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Physical Review A 59, 4249 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Physical Review A 56(2), 1201–1204 (1997)CrossRefGoogle Scholar
  4. 4.
    Buhrman, H., Röhrig, H.: Distributed Quantum Computing. In: Mathematical Foundations of Computer Science 2003, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Physical Review Letters 67(6), 661–663 (1991)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ribordy, G., Brendel, J., Gautier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Physical Review A 63(1), 12309 (2000)CrossRefGoogle Scholar
  7. 7.
    Chuang, I.L.: Quantum algorithm for distributed clock synchronization. Physical Review Letters 85(9), 2006–2009 (2000)CrossRefGoogle Scholar
  8. 8.
    Van Meter, R., Munro, W.J., Nemoto, K., Itoh, K.M.: Arithmetic on a distributed-memory quantum multicomputer. ACM Journal of Emerging Technologies in Computing Systems 3(4), 17 (2008)CrossRefGoogle Scholar
  9. 9.
    Van Meter III, R.D.: Architecture of a Quantum Multicomputer Optimized for Shor’s Factoring Algorithm. PhD thesis, Keio University (2006) arXiv:quant-ph/0607065Google Scholar
  10. 10.
    Clark, S.M., Fu, K.M.C., Ladd, T.D., Yamamoto, Y.: Quantum computers based on electron spins controlled by ultra-fast, off-resonant, single optical pulses. Physical Review Letters 99, 040501 (2007)CrossRefGoogle Scholar
  11. 11.
    Oi, D.K.L., Devitt, S.J., Hollenberg, L.C.L.: Scalable error correction in distributed ion trap computers. Physical Review A 74, 052313 (2006)CrossRefGoogle Scholar
  12. 12.
    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147–153 (1996), MathSciNetCrossRefGoogle Scholar
  13. 13.
    Van Meter, R., Nemoto, K., Munro, W.J.: Communication links for distributed quantum computation. IEEE Transactions on Computers 56(12), 1643–1653 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lenstra, A., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J., Leyland, P.: Factoring estimates for a 1024-bit RSA modulus. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 55–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New Journal of Physics 8, 30 (February 2006)Google Scholar
  16. 16.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. 35th Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  17. 17.
    Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Review of Modern Physics 68(3), 733–753 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Information and Computation 6(7), 630–640 (2006)MathSciNetMATHGoogle Scholar
  19. 19.
    Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54, 1034–1063 (1996), MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kunihiro, N.: Practical running time of factoring by quantum circuits. In: Proc. ERATO Conference on Quantum Information Science (EQIS 2003) (September 2003)Google Scholar
  21. 21.
    Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Physical Review A 71(5), 052320 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Physical Review Letters 96, 240501 (2006)CrossRefGoogle Scholar
  23. 23.
    Gunn, C.: CMOS photonics for high-speed interconnects. IEEE Micro 26(2), 58–66 (2006)CrossRefGoogle Scholar
  24. 24.
    Ladd, T.D.: private communication (February 2008)Google Scholar
  25. 25.
    Fowler, A.G.: Constructing arbitrary single-qubit fault-tolerant gates. quant-ph/0411206 (December 2005)Google Scholar
  26. 26.
    Jiang, L., Taylor, J.M., Sorensen, A.S., Lukin, M.D.: Scalable quantum networks based on few-qubit registers. quant-ph/0703029 (2007)Google Scholar
  27. 27.
    Kim, J., Kim, C.: Integrated Optical Approach to Trapped Ion Quantum Computation. eprint arXiv: 0711.3866 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rodney Van Meter
    • 1
  • W. J. Munro
    • 2
    • 3
  • Kae Nemoto
    • 3
  1. 1.Faculty of Environment and Information StudiesKeio UniversityKanagawaJapan
  2. 2.Hewlett-Packard LaboratoriesBristolUnited Kingdom
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations