Skip to main content

Effect of the EHD Flow on Particle Surface Charging and the Collection Efficiency of Submicron and Ultrafine Dust Particles in Wire-plate Type Electrostatic Precipitators

  • Conference paper
Electrostatic Precipitation
  • 1618 Accesses

Abstract

In this work, the effect of electrohydrodynamic (EHD) secondary flow on the wire-plate type electrostatic precipitator partial collection efficiencies for submicron and ultrafine dust particles in the range from 0.01 μm to 10 μm have been calculated based on the cross-sectional averaged values of numerically obtained ion density, electric field and gas velocity and coupled together with particle surface charge models based on the modified diffusion and field particle charging rates. The results show that the particle surface charge of particles between 0.01 μm and 1 μm are not significantly influenced by EHD secondary flow, however, EHD flow do perturbing the local surface charge and local particle collection efficiency. The net effect on the partial collection efficiency is not significant for the submicron size particle range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masuda, S. and Hosokawa. Electrostatic precipitation, Handbook of electrostatic processes. Editors: J.S. Chang, A.J. Kelly, and J.M. Crowley, Marcel Dekker, Inc., New York, Ch. 21, 441–479, 1995.

    Google Scholar 

  2. Ito, T., Kubota, T., Zukeran, A., Takashi, T., Shinkai, K., Miyamoto, M. and Yoshimochi, T. Collection characteristics of submicron particles on electrostatic precipitator, J. Inst. Elect. Install, Eng. Japan, Vol. 15 (2): 113–120, 1995.

    Google Scholar 

  3. Riehle, C. and Loffler, F. The Effective Migration Rate in Electrostatic Precipitator. Aerosol Science Technology, Vol. 16 (12): 1288–1296, 1996.

    Google Scholar 

  4. Raphael, M., Rohani, S., and Soslski, F. Isoelectric precipitation of sunflower protein in a tubular precipitator. Can. J. Chem. Eng., Vol. 73, 470–483, 1995.

    Article  CAS  Google Scholar 

  5. Chang, J.S., Thompson, H., Looy, P.C., Berezin, A.A., Zukeran, A., Ito, T., Jayaram, S. and Cross, J.D. Control of trace elements in combustion flue gas by a corona discharge activated conditioning agent and electrostatic precipitators, Proceedings of the 6th International conference on Electrostatic Precipitators, I. Berta, Ed. Budapest, Hungary: Tech. Univ. Budapest Press, 2–7, 1997.

    Google Scholar 

  6. Zukeran, A., Chang, J.S., Berezin, A.A. and Ito, T. Control of ultrafine particles from incense smoke by an air cleaning electrostatic precipitator, [J]. Aerosol Sci., Vol. 28, suppl. 1, S289–S290, 1997.

    Article  CAS  Google Scholar 

  7. Pauthenier, M.M., and Moreau-Hanot, M. Le charge des particules spheriques dans un champ ionise, [J]. Phys. Radium (Paris), Vol. 3, 590, 1932.

    Google Scholar 

  8. Mizuno, A. Electrostatic Precipitation, IEEE DEI, Vol. 7 No. 5, 615–624, 2000.

    CAS  Google Scholar 

  9. Brocilo, D., Chang, J.S. and Findlay, R.D. Modeling of electrode geometry effects on dust collection efficiency of wire-plate electrostatic precipitators. Proceedings of 8th International Conference on Electrostatic Precipitation, Vol. 1, 1–18, 2001.

    Google Scholar 

  10. Yamamoto, T. and H. R. Velkoff. Electrohydrodynamics in an Electrostatic Precipitator, [J]. Fluid Mechanics, Vol. 108, 1–18, 1981.

    Article  Google Scholar 

  11. Podlinski, J., J. Dekowski, J. Mizeraczyk, D. Brocilo and J. S. Chang. Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency, [J]. Electrostatics, Vol. 64, 259–262, 2006.

    Article  Google Scholar 

  12. Mizeraczyk, J., M. Kocik, J. Dekowski, M. Dors, J Podlinski, T. Ohkubo, S. Kanazawa, T. Kawasaki. Measurements of the Velocity Field of the Flue. Gas Flow in an Electrostatic Precipitator Model using PIV method, [J]. Electrostat. 51–52: 272–277, 2001.

    Article  Google Scholar 

  13. Mizeraczyk, J. Dekowski, J. Podliński, J. M. Kocik, T. Ohkubo, S. Kanazawa. Laser Flow Visualization and Velocity Fields by Particle Image Velocimetry in Electrostatic Precipitator Model, [J]. Visualization 6, 2: 125–133, 2003.

    Article  Google Scholar 

  14. Podliński, J. Dekowski, J. Mizeraczyk, J., D. Brocilo, K. Urashima, J.S. Chang. EHD Flow in a Wide Electrode Spacing Spike-Plate Electrostatic Precipitator under Positive Polarity, [J]. Electrost. 64: 498 505, 2006

    Article  Google Scholar 

  15. Ohkubo, T., S. Hamasaki, Y. Nomoto, J. S. Chang and T. Adachi. The Effect of Corona Wire Heating on the Downstream Ozone Concentration Profiles in an Air-Cleaning Wire-Duct Electrostatic Precipitator. IEEE Transactions on Industry Applications, Vol. 36, 542–549, 1990.

    Article  Google Scholar 

  16. Atten, P., F. M. J. McCluskey and A. C. Lahjomri. The Electrohydrodynamic origin of turbulence in electrostatic precipitators. IEEE Trans. Ind. Appl., Vol. 23, 705–711, 1987.

    Article  Google Scholar 

  17. Yamamoto, Y., M. Okuda and M. Okubo. Three-dimensional ionic wind and electrohydrodynamics of tuft/point corona electrostatic precipitator. IEEE Trans. Ind. Appl., Vol. 39, 1602–1607, 2002.

    Article  Google Scholar 

  18. Choi, B.S. and C. A. J. Fletcher. Computation of particle transport in an electrostatic precipitator, [J]. Electrostatics, Vol. 40, No. 41, 413–418, 1997.

    Article  Google Scholar 

  19. Park, S.J. and S. S. Kim. Electrohydrodynamic Flow and Particle Transport Mechanism in Electrostatic Precipitators with Cavity Walls. Aerosol Sci. Tech., Vol. 33, 205–221, 2000.

    Article  CAS  Google Scholar 

  20. Schemid, H.J., S. Stolz and H. Buggisch. On the Modelling of the Electro-Hydrodynamic Flow Field in Electrostatic Precipitators. Flow Turbulence and Combustion, Vol. 68, 63–89, 2002.

    Article  Google Scholar 

  21. Liang, W.J. and T. H. Lin. The Characteristics of Ionic Wind and Its Effect on Electrostatic Precipitators. Aerosol Sci. Technol., Vol. 20, 330–336, 1994.

    Article  CAS  Google Scholar 

  22. Zhao, L. and Adamiak, K. Numerical Simulation of EHD Flow in a Single Wire-Plate ESPs. IEEE Trans. IAS, Vol. 40, No. 3, 683–689, 2008.

    Google Scholar 

  23. Chun, Y.N., J.S. Chang, A.A. Berezin and J. Mizeraczyk. Numerical modeling of EHD flow for wire-plate ESPs. IEEE Trans. DEI, 41–1, 119–125, 2007.

    Google Scholar 

  24. Chang, J.S. Theory of Diffusion Charging of Arbitrarily Shaped Conductive Aerosol Particles by Unipolar Ions, J. Aerosol Sci, Vol. 12, 19–26, 1981.

    Article  Google Scholar 

  25. Brock, J.R. Noncontinum Unipolar Charging of Aerosol, J. Applied Phys., Vol. 41, 1940–1944, 1970.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Brocilo, D., Berezin, A., Chang, J.S. (2009). Effect of the EHD Flow on Particle Surface Charging and the Collection Efficiency of Submicron and Ultrafine Dust Particles in Wire-plate Type Electrostatic Precipitators. In: Yan, K. (eds) Electrostatic Precipitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89251-9_27

Download citation

Publish with us

Policies and ethics