Skip to main content

Mechanical Integration of Plant Cells

  • Chapter
  • First Online:
  • 2105 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

In order to function in changing environmental conditions, all living organisms need to be equipped with two sets of seemingly contradictory mechanisms; these enable them to (1) integrate themselves in separation from the environment, and (2) sense and communicate with their immediate surrounding. During the course of evolution, several factors—both physical and chemical—have emerged as organismal integrators. Among these, gravity provides a major directional stimulus, while chemical compounds are usually used as internal integratory molecules (Bhalerao and Bennett 2003).

Although the same cellular toolkit of their common ancestor gave rise to present-day eukaryotes through evolution, it should be remembered that plant and animal lineages diverged about 1 billion years before they became multicellular organisms. As a consequence, plants and animals differ in their lifestyles, responses to stimuli, and adaptations to the environment. This distinction results from the adoption of two different strategies of coping with the regulation of intracellular water content, and is reflected in the properties and behavior of "naked" animal cells vs. “walled” plant cells (Peters et al. 2000). Thus, while animals are able to move away when conditions are unfavorable, plants—since they are sessile organisms—must react and/or adapt to changes. As a result, much greater plasticity of plants and their cells is observed (Valladares et al. 2000).

All organisms have the ability to sense and respond to a variety of physical stimuli, such as radiation, temperature, and gravity (Volkmann and Baluška 2006). Although physical forces act in the same manner on different organisms, the effects of their actions depend on the organism's habitat. For example, the effect of gravitational force on an organism depends greatly on whether it lives in water or on land. On the other hand, the forces exerted on terrestrial plants by the movement of air are much lower than those exerted on aquatic ones by the movement of water (Niklas et el. 2000). Thus, although the overall construction of any particular plant or plant cell is generally similar to that of any other, the details of the biochemical and mechanical designs can vary considerably, as these are also shaped by the changing conditions in the cell's or organism's immediate surroundings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antosiewicz D, Polisensky D, Braam J (1995) Cellular localization of the Ca2+ binding CH3 protein of Arabidopsis. Plant J 8:623–636

    Article  PubMed  CAS  Google Scholar 

  • Antosiewicz D, Purugganan M, Polisensky D, Braam J (1997) Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation. Plant Physiol 115:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Cortassa S, Gomez Casati DF, Iglesias AA (2000) Effects of stress on cellular infrastructure and metabolic organization in plant cells. Int Rev Cytol 194:239–273

    Article  PubMed  Google Scholar 

  • Arnaout MA, Goodman SL, Xiong J-P (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507

    Article  PubMed  CAS  Google Scholar 

  • Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trands Cell Biol 18:347–352

    Article  CAS  Google Scholar 

  • Baluška F, Hasenstein KH (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta 203:S69– S78

    Article  PubMed  Google Scholar 

  • Baluška F, Hlavačka A (2005) Plant formins come of age: something special about cross-walls. New Phytol 168:499–503

    Article  PubMed  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Jasik J, Edelmann HG, Salajova T, Volkmann D (2001) Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev Biol 231:113–124

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton–plasma membrane–cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  CAS  Google Scholar 

  • Barlow P (1995) Gravity perception in plants—a multiplicity of systems derived by evolution. Plant Cell Environ 18:951–962

    Article  PubMed  CAS  Google Scholar 

  • Barthou H, Petitprez M, Brière C, Souvré A, Alibert G (1998) RGD-mediated membrane-matrix adhesion triggers agarose-induced embryoid formation in sunflower protoplasts. Protoplasma 206:143–151

    Article  Google Scholar 

  • Benjamins R, Ampudia C, Hooykaas P, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Taylor A, Brownlee C (1994) Cell fate determination by the cell wall in early Fucus development. Science 263:1421–1423

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21:120–136

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the up and downs of a complex process. Plant Physiol 133:1677–1690

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq M, Laurière C (2005) Osmotic signalling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Braam J (1992) Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: Induction by calcium and heat shock. Proc Natl Acad Sci USA 89:3213–3216

    Article  PubMed  CAS  Google Scholar 

  • Braam J (2005)In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Braam J , Davis R(1990)Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  PubMed  CAS  Google Scholar 

  • Braam J, Sistrunk M, Polisensky D, Xu W, Purugganan M, Antosiewicz D, Campbell P, Johnson K (1997) Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta 203:S35–S41

    Article  PubMed  CAS  Google Scholar 

  • Braun M (2002) Gravity perception requires statoliths settles on specific plasma membrane areas in characean rhisoids and protonemata. Protoplasma 219:150–159

    Article  PubMed  Google Scholar 

  • Braun M, Buchen B, Sievers A (2002) Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity. J Plant Growth Regul 21:137–145

    Article  PubMed  CAS  Google Scholar 

  • Canut H, Carrasco A, Galaud JP, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16:63–71

    Article  PubMed  CAS  Google Scholar 

  • Caspar T, Pickard BG (1989) Gravitropism in starchless mutant of Arabidopsis—implication for the starch-statolith theory of gravity sensing. Planta 177:185–197

    Article  PubMed  CAS  Google Scholar 

  • Chuong SDX, Franceschi VR, Edwards GE (2006) The cytoskeleton maintains organelle partitioning required for single-cell C 4 photosynthesis in Chenopodiaceae species. Plant Cell 18:2207–2223

    Article  PubMed  CAS  Google Scholar 

  • Chytilova E, Macas J, Śliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    PubMed  CAS  Google Scholar 

  • Cleary AL (2001) Plasma membrane-cell wall connections: roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells. Protoplasma 215:21–34

    Article  PubMed  CAS  Google Scholar 

  • Coba de la Peña T, Cárcamo CB, Almonacid L, Zaballos A, Lucas MM, Balomenos D, Pueyo JJ (2008) A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta 227:769–779

    Article  PubMed  CAS  Google Scholar 

  • Comstock JP (2002) Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200

    Article  PubMed  CAS  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46 :268–278

    Article  PubMed  CAS  Google Scholar 

  • Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7:492–498

    Article  PubMed  CAS  Google Scholar 

  • Driss-Ecole D, Lefranc A, Perbal G (2003) A polarized cell: root statocyte. Physiol Plant 118:305–312

    Article  PubMed  CAS  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC, Mulder BM (2000) How the deposition of cellulose microfibrils builds cell wall architecture. Trends Plant Sci 5:35–40

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  • Esmon C, Pedmale U, Liscum E (2005) Plant tropisms: providing the power of movement to a sessile organism. Int J Dev Biol 49:665–674

    Article  PubMed  CAS  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for gravity response of the Arabidopsis root. Plant Cell 13:907–921

    PubMed  CAS  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21:71–88

    Article  PubMed  CAS  Google Scholar 

  • Fisher DD, Cyr RJ (1998) Extending the microtubule/microfibril paradigm. Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Forgacs G (1995) On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci 108:2131–2143

    PubMed  CAS  Google Scholar 

  • Friml J, Wiśniewska J, Benkova G, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430

    Article  PubMed  CAS  Google Scholar 

  • Gens JS, Fujiki M, Pickard BG (2000) Arabinogalactan protein and wall-associated kinase in a plasmalemmal reticulum with specialized vertices. Protoplasma 212:115–134

    Article  PubMed  CAS  Google Scholar 

  • Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rouge P, Pont-Lezica R, Canut H (2006) Lectin receptor kinases participate in protein–protein interactions to mediate plasma membrane–cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90

    Article  PubMed  CAS  Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Harter K (2004) Plant two-component systems: principles, functions, complexity and cross talk. Planta 219:733–742

    Article  PubMed  CAS  Google Scholar 

  • Gus-Mayer S, Naton B, Hahlbrock K, Schmelzer E (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci USA 95:8398–8403

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    Article  PubMed  CAS  Google Scholar 

  • Harold FM (1995) From morphogenes to morphogenesis. Microbiology 141:2765–2778.

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Meyerowitz E (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz E, Frachisse J-M (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Takagi S (2003) Ca2+-dependent cessation of cytoplasmic streaming induced by hypertonic treatment in Vallisneria mesophyll cells: possible role of cell wall–plasma membrane adhesion. Plant Cell Physiol 44:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Harada A, Sakai T, Takagi S (2006) Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall–plasma membrane adhesion. Plant Cell Environ 29:661–672

    Article  PubMed  CAS  Google Scholar 

  • He YC, He YQ, Qu LH, Sun MX, Yang HY (2007) Tobacco zygotic embryogenesis in vitro: the original cell wall of the zygote is essential for maintenance of cell polarity, the apical–basal axis and typical suspensor formation. Plant J 49:515–527

    Article  PubMed  CAS  Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    Article  PubMed  CAS  Google Scholar 

  • Hernández LF, Green PB (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5:1725–1738

    PubMed  Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  • Homann U, Meckel1 T, Hewing J, Hütt M-T, Hurst AC (2007) Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells. Eur J Cell Biol 86:489–500

    Article  PubMed  CAS  Google Scholar 

  • Hoson T, Saito Y, Soga K, Wakabayashi K (2005) Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants. Adv Space Res 36:1196–1202

    Article  Google Scholar 

  • Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon disruption is coupled with the extended alkalization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125

    Article  PubMed  CAS  Google Scholar 

  • Hussey P, Allwood E, Smertenko A (2002) Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos Trans R Soc Lond B Biol Sci 357:791–798

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2003a) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  CAS  Google Scholar 

  • Ingber DE (2003b) Tensegrity II. How structural network influence cellular information processing network. J Cell Sci 116:1397–1408

    Article  CAS  Google Scholar 

  • Kaplan DR, Cooke TJ (1997) Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9:1903 –1919

    PubMed  CAS  Google Scholar 

  • Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD (2005) Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221:149– 157

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Guisinger M, Miller A, Stackhouse K (1997) Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol 38:518–525

    Article  PubMed  CAS  Google Scholar 

  • Knight M, Campbell A, Smith S, Trewavas A (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Han KH, Park S, Yang J (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135:1069–1083

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (2000) Plasma membrane–cell wall contacts. Plant Physiol 124:31–38

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (2001) WAKs: cell wall associated kinases. Curr Opin Cell Biol 13:529–533

    Article  PubMed  CAS  Google Scholar 

  • Koizumi T, Sakaki T, Usui S, Soga K, Wakabayashi K, Hoson T (2007) Changes in a membrane lipid composition in adzuki bean epicotyls under hypergravity conditions: possible role of membrane sterols in gravity resistance. Adv Space Res 39:1198–1203

    Article  CAS  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2003) Actomyosin is involved in the plasmolytic cycle: gliding movement of the deplasmolyzing protoplast. Protoplasma 221:245–256

    PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle of mechanosensation. Nature 436:647–654

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101:615–621

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1997) Magnetophoretic induction of curvature in coleoptiles and hypocotyls. J Exp Bot 48:1951–1957

    PubMed  CAS  Google Scholar 

  • LaMotte CE, Pickard BG (2004) Control of gravitropic orientation. II. Dual receptor model for gravitropism. Funct Plant Biol 31:109–120

    Article  PubMed  Google Scholar 

  • Lang I, Barton DA, Overall RL (2004) Membrane-wall attachments in plasmolysed plant cells. Protoplasma 224:231–243

    Article  PubMed  CAS  Google Scholar 

  • Lang-Pauluzzi I, Gunning BES (2000) A plasmolytic cycle: the fate of cytoskeletal elements. Protoplasma 212:174–185

    Article  Google Scholar 

  • Lee D, Polisensky D, Braam J (2005) Genome-wide identification of touch- and darkness- regulated Arabidopsis gene: a focus on calmodulin-like and XTH genes. New Phytol 165:429–444

    Article  PubMed  CAS  Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800

    Article  PubMed  Google Scholar 

  • Limbach C, Hauslage J, Schöfer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in Characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Lintilhac PM, Vesecky TB (1984). Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Article  Google Scholar 

  • Lucas WJ, Ding B, van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Article  Google Scholar 

  • Lynch TM, Lintilhac PM (1997) Mechanical signals in plant development: a new method for single cell studies. Dev Biol 181:246–256

    Article  PubMed  CAS  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  PubMed  CAS  Google Scholar 

  • Maniotis AJ, Valyi-Nagy K, Karavitis J, Moses J, Boddipali V, Wang Y, Nuñez R, Setty S, Arbieva Z, Bissell MJ, Folberg R (2005) Chromatin organization measured by AluI restriction enzyme changes with malignancy and is regulated by the extracellular matrix and the cytoskeleton. Am J Pathol 166:1187–1203

    Article  PubMed  CAS  Google Scholar 

  • Marshall JG, Dumbroff EB (1999) Turgor regulation via cell wall adjustment in white spruce. Plant Physiol 119:313–319

    Article  PubMed  CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • Mathur J (2006) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–46

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Saito Y, Kamasaki S, Soga K, Wakabayashi K, Hoson T (2007) Up-regulation of expression of tubulin genes and roles of microtubules in hypergravity-induced growth modification in Arabidopsis hypocotyls. Adv Space Res 39:1179–1181

    Article  Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159:585–598

    Article  CAS  Google Scholar 

  • Meckel T, Hurst AC, Thiel G, Homann U (2005) Guard cells undergo constitutive and pressure driven membrane turnover. Protoplasma 226:23–29

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Heath MC (2001) Plasma membrane–cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13:413–424

    PubMed  CAS  Google Scholar 

  • Meyer Y, Abel WO (1975) Importance of the wall for cell division and in the activity of the cytoplasm in cultured tobacco protoplasts. Planta 123:33–40

    Article  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membrane Biol 179:79–102

    CAS  Google Scholar 

  • Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA 105:6626–6631

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa N, Sakurai N (2001) Cell wall integrity controls expression of endoxyloglucan transferase in tobacco BY2 cells. Plant Cell Physiol 42:240–244

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Lida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Lida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102:11594–11599

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Okada K, Shimura Y (1990) Reversible root-tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250:274–276

    Article  PubMed  CAS  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  PubMed  CAS  Google Scholar 

  • Palmieri M, Kiss JZ (2005) Disruption of F-actin cytoskeleton limits statolith movement in Arabidopsis hypocotyls. J Exp Bot 56:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Panteris E, Galatis B (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol 167:721–732

    Article  PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Paredez AR, Persson S, Ehrhardt DW, Somerville CR (2008) Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol 147(4):1723–1734

    Article  PubMed  CAS  Google Scholar 

  • Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504

    Article  PubMed  CAS  Google Scholar 

  • Perrin R, Young L, Murthy N, Harrison B, Wang Y, Will A, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot 96:737–743

    Article  PubMed  CAS  Google Scholar 

  • Peters WS, Hagemann W , Tomos DA (2000) What makes plants different? Principles of extracellular matrix function in "soft" plant tissues. Comp Biochem Physiol A 125:151–167

    Article  CAS  Google Scholar 

  • Pickard BG (2007) Delivering force and amplifying signals in plant mechanosensing. In: Mechanosensitive ion channels, Part A. Elsevier, New York, pp 361–392

    Google Scholar 

  • Plieth ,CTrewavasAJ (2002) Reorientation of seedlings in the Earth's gravitational field induces cytosolic calcium transiently. Plant Physiol 129:789–796

    Article  CAS  Google Scholar 

  • Proseus TE, Boyer JS (2006a) Identifying cytoplasmic input to the cell wall of growing Chara corallina. J Exp Bot 57:3231–3242

    Article  CAS  Google Scholar 

  • Proseus TE, Boyer JS (2006b) Periplasm turgor pressure controls wall deposition and assembly in growing Chara corallina cells. Ann Bot 98:93–105

    Article  CAS  Google Scholar 

  • Proseus TE, Zhu GL, Boyer JS (2000) Turgor, temperature and the growth of plant cells: using Chara corallina as a model system. J Exp Bot 51:1481–1494

    Article  PubMed  CAS  Google Scholar 

  • Qu L-H, Sun M-X (2007) The plant cell nucleus is constantly alert and highly sensitive to repetitive local mechanical stimulation. Plant Cell Rep 26:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169:647–666

    Article  PubMed  Google Scholar 

  • Sack FD (1997) Plastids and gravity sensing. Planta 203:S63–S68

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Kadota A, Wada M (2003) Chloroplast movement: dissection of events downstream of photo- and mechano-perception. J Plant Res 116:1–5

    PubMed  Google Scholar 

  • Schindler M, Meiners S, Cheresh DA(1989)RGD-dependent linkage between plant cell wall and plasma membrane: Consequences for growth. J Cell Biol 108:1955–1965

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant-microbe interactions. Physiol Mol Plant Pathol 71:135–148

    Article  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Shope JC, DeWald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2002) Perception of gravity stimuli by mechanosensitive ion channels in plant seedlings. Plant Cell Physiol 43:182

    Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2005a) Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in adzuki bean. Funct Plant Biol 32:175–179

    Article  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2005b) Hypergravity inhibits elongation growth of adzuki bean epicotyls independently of the direction of stimuli. Adv Space Res 36:1269–1279

    Article  CAS  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2006) Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in adzuki bean epicotyls. Planta 224:1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203(Suppl 1):S79–S84

    Article  PubMed  CAS  Google Scholar 

  • Staves MP, Wayne R, Leopold AC (1992) Hydrostatic pressure mimics gravitational pressure in characean cells. Protoplasma 168:141–152

    Article  PubMed  CAS  Google Scholar 

  • Staves MP, Wayne R, Leopold AC (1997) Cytochalasin D does not inhibit gravitropism in roots. Am J Bot 84:1530–1535

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462

    Article  PubMed  CAS  Google Scholar 

  • Tasaka M, Kato T, Fukaki H (2001) Genetic regulation of gravitropism in higher plants. Int Rev Cytol 206:135–154

    Article  PubMed  CAS  Google Scholar 

  • Telewski F (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    Article  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Valle F, Sandal M, Samorì B (2007) The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function. Physics Life Rev 4:157–188

    Article  Google Scholar 

  • van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378:62–65

    Article  PubMed  CAS  Google Scholar 

  • van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289

    Article  PubMed  CAS  Google Scholar 

  • van der Honing HS, Emons AMC, Ketelaar T (2007) Actin based processes that could determine the cytoplasmic architecture of plant cells. Biochim Biophys Acta 1773:604–614

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Yang M, Sack FD, Kiss JZ (2007) Gravitropism in the starch excess mutant of Arabidopsis thaliana. Am J Bot 94:590–598

    Article  PubMed  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F (2006) Gravity: one of the driving forces in evolution. Protoplasma 229:143–148

    Article  PubMed  CAS  Google Scholar 

  • Wayne R, Staves MP, Leopold AC (1992) The contribution of the extracellular matrix to gravisensing in characean cells. J Cell Sci 101:611–623

    PubMed  CAS  Google Scholar 

  • Wendt M, Kuo-Huang L, Sievers A (1987) Gravitropic bending of cress roots without contact between amyloplasts and complexes of endoplasmic reticulum. Planta 172:321–329

    Article  PubMed  CAS  Google Scholar 

  • Wightman R , Turner SR (2008) The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J 54:794–805

    Article  PubMed  CAS  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P (2000) Genes and plant cell walls: a difficult relationship. Biol Rev 75:437–475

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P (2001) Organismal view of a plant and a plant cell. Acta Biochim Polon 48:443–451

    PubMed  CAS  Google Scholar 

  • Wojtaszek P, Anielska-Mazur A, Gabryś H, Baluška F, Volkmann D (2005) Rapid relocation of myosin VIII between cell periphery and plastid surfaces are root-specific and provide the evidence for actomyosin involvement in osmosensing. Funct Plant Biol 32:721–736

    Article  CAS  Google Scholar 

  • Wojtaszek P, Baluška F, Kasprowicz A, Łuczak M, Volkmann D (2007) Domain-specific mechanosensory transmission of osmotic and enzymatic cell wall disturbances to the actin cytoskeleton. Protoplasma 230:217–230

    Article  PubMed  CAS  Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evens ML (2002) Root gravitropism in response to a signal originating outside of the cap. Planta 215:153–157

    Article  PubMed  CAS  Google Scholar 

  • Wyatt SE, Carpita NC (1993) The plant cytoskeleton–cell wall continuum. Trends Cell Biol 3:413–417

    Article  PubMed  CAS  Google Scholar 

  • Wymer C, Lloyd C (1996) Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci 1:222–228

    Google Scholar 

  • Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    PubMed  CAS  Google Scholar 

  • Xiong TC, Jauneau A, Ranjeva R, Mazars C (2004) Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling. Plant J 40:12–21

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Purugganan M, Polisensky D, Antosiewicz D, Fry S, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    PubMed  CAS  Google Scholar 

  • Yahraus T, Chandra S, Legendre L, Low PS (1995) Evidence for a mechanically induced oxidative burst. Plant Physiol 109:1259–1266

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Kiss JZ (2002) Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol 128:669–681

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Reece JM, Cho J, Bortner CD, Shears SB (2008) The nucleolus exhibits an osmotically regulated gatekeeping activity that controls the spatial dynamics and functions of nucleolin. J Biol Chem 283:11823–11831

    Article  PubMed  CAS  Google Scholar 

  • Yoder TL, Zheng HQ, Todd P, Staehelin A (2001) Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of root. Plant Physiol 125:1045–1060

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T(2004)Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134: 813–823

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12:90–97

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Cordeiro S, Tupý J, Feijó JA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. Plant Cell 14:2233–2249

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Müller M, Munnik T (2006) Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth. Cell Biochem Biophys 46:209–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasprowicz, A. et al. (2009). Mechanical Integration of Plant Cells. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_1

Download citation

Publish with us

Policies and ethics