Advertisement

Signaling and Cell Walls

  • Ewelina Rodakowska
  • Marta Derba-Maceluch
  • Anna Kasprowicz
  • Paweł Zawadzki
  • Agnieszka Szuba
  • Daniel Kierzkowski
  • Przemysław Wojtaszek
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM)

Abstract

Cell walls are dynamic entities providing the link between cellular and organismal features of the plant. Being external to protoplasts, they provide not only the transportation pathways for signaling molecules, but also constitute a rich source of such molecules. Moreover, their spatial placement also makes them a specific “zone of the first contact” with the surrounding environment. Here, we provide a brief overview of the functions the walls play in plant signaling. We describe the physicochemical properties of the walls and discuss their impact on the type of signaling molecules transported via the apoplast, and the types of extracellular domains of receptor molecules. The role of the walls in the formation and maintenance of the structural and functional continuum between cell walls, the plasma membrane, and the cytoskeleton is then considered, especially with respect to mechanosensing, transduction of mechanical signals, and monitoring of cell wall integrity. Finally, a range of signaling molecules and their activities are reviewed.

Keywords

Nitric Oxide Somatic Embryogenesis Shoot Apical Meristem Cell Wall Integrity Tyrosine Nitration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aldington S, Fry S (1993) Oligosaccharins. Adv Bot Res 19:1–101CrossRefGoogle Scholar
  2. Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784PubMedCrossRefGoogle Scholar
  3. Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197–206PubMedCrossRefGoogle Scholar
  4. Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887CrossRefGoogle Scholar
  5. Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K (1999) Alfalfa and tobacco cells react differently to chitin oligosaccharides and Sinorhizobium meliloti nodulation factors. Planta 210:157–164PubMedCrossRefGoogle Scholar
  6. Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 226:618–632CrossRefGoogle Scholar
  7. Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491PubMedCrossRefGoogle Scholar
  8. Barthou H, Petitprez M, Briere C, Souvre A, Alibert G (1999) RGD-mediated membrane-matrix adhesion triggers agarose-induced embryoid formation in sunflower protoplasts. Protoplasma 206:143–151CrossRefGoogle Scholar
  9. Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358PubMedCrossRefGoogle Scholar
  10. Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131PubMedGoogle Scholar
  11. Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163–181PubMedCrossRefGoogle Scholar
  12. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341PubMedCrossRefGoogle Scholar
  13. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140PubMedCrossRefGoogle Scholar
  14. Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192PubMedCrossRefGoogle Scholar
  15. Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Paul Bolwell G (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863PubMedCrossRefGoogle Scholar
  16. Bisseling T (1999) The role of plant peptides in intercellular signaling. Curr Opin Plant Biol 2:365–368PubMedCrossRefGoogle Scholar
  17. Bloomfield G, Pears C (2003) Superoxide signaling required for multicellular development of Dictyostelium. J Cell Sci 116:3387–3397PubMedCrossRefGoogle Scholar
  18. Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defense — a broad perspective. Physiol Mol Plant Pathol 51:347–366CrossRefGoogle Scholar
  19. Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132:568–577Google Scholar
  20. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–388PubMedCrossRefGoogle Scholar
  21. Braam J, Davies RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364PubMedCrossRefGoogle Scholar
  22. Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls, 2nd ed. Chapman & Hall, LondonGoogle Scholar
  23. Brownlee C (2002) Role of the extracellular matrix in cell-cell signaling: paracrine paradigms. Curr Opin Plant Biol 5:396–401PubMedCrossRefGoogle Scholar
  24. Canny MJ (1995) Apoplastic water and solute movement: new rules for an old space. Annu Rev Plant Physiol Plant Mol Biol 46:215–236CrossRefGoogle Scholar
  25. Canut H, Carrasco A, Galaud J, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana link the cell wall. Plant J 16:63–71PubMedCrossRefGoogle Scholar
  26. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines specificity of flagellin perception. Plant Cell 18:465–476PubMedCrossRefGoogle Scholar
  27. Clark SE (2001) Cell signaling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284PubMedCrossRefGoogle Scholar
  28. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585PubMedCrossRefGoogle Scholar
  29. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677PubMedCrossRefGoogle Scholar
  30. Correa-Arragunde N, Lombardo C, Lamattina L (2008) Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytol 179:386–396CrossRefGoogle Scholar
  31. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  32. Côé F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26:1379–1411PubMedCrossRefGoogle Scholar
  33. Creelman RA, Mullet JE (1997) Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9:1211–1223PubMedCrossRefGoogle Scholar
  34. Darvill AG, Augur C, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn MG, Ló V-M, Marfa V, Meyer U, Mohnen D, O'Neill MA, Spiro MD, van Halbeek H, York WS, Albersheim P (1992) Oligosaccharins - oligosaccharides that regulate growth, development and defense responses in plants. Glycobiology 2:181–198PubMedCrossRefGoogle Scholar
  35. Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278PubMedCrossRefGoogle Scholar
  36. Decreaux A, Thomas A, Spies B, Brasseur R, Van Cutsem P, Messiaen J (2006) In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis. Phytochemistry 67:1068–1079CrossRefGoogle Scholar
  37. Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7:492–498PubMedCrossRefGoogle Scholar
  38. De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433PubMedCrossRefGoogle Scholar
  39. De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Schiavo F, Terzi M, Bisseling T, Van Kammen A, De Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5:615–620PubMedCrossRefGoogle Scholar
  40. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588PubMedCrossRefGoogle Scholar
  41. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459PubMedCrossRefGoogle Scholar
  42. Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO·/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350PubMedCrossRefGoogle Scholar
  43. de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795PubMedCrossRefGoogle Scholar
  44. DeWitt G, Richards J, Mohnen D, Jones AM (1999) Comparative compositional analysis of walls with two different morphologies: archetypical versus transfer-cell-like. Protoplasma 209:238–245CrossRefGoogle Scholar
  45. DeYulia GJ, Cárcamo JM, Bórquez-Ojeda O, Shelton CC, Golde DW (2005) Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A 102:5044–5049PubMedCrossRefGoogle Scholar
  46. D'Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R–105RPubMedCrossRefGoogle Scholar
  47. Ding B, Kwon MO, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164CrossRefGoogle Scholar
  48. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADPribose. Proc Natl Acad Sci U S A 95:10328–10333PubMedCrossRefGoogle Scholar
  49. Farmer EE, Moloshok TD, Saxton MJ, Ryan CA (1991) Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266:3140–3145Google Scholar
  50. Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6:105–134PubMedCrossRefGoogle Scholar
  51. Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation and establishment of a refractory state. Plant J 4:307–316CrossRefGoogle Scholar
  52. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276PubMedCrossRefGoogle Scholar
  53. Ferrer MA, Ros Barcelo A (1999) Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant Cell Environ 22:891–897CrossRefGoogle Scholar
  54. Fleischer A, O'Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838PubMedCrossRefGoogle Scholar
  55. Fleming A (2005) The plant extracellular matrix and signaling. Fleming A Intercellular communication in plants. Blackwell, Oxford, pp 85–108Google Scholar
  56. Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Science 276:1415–1418CrossRefGoogle Scholar
  57. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914PubMedCrossRefGoogle Scholar
  58. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446PubMedCrossRefGoogle Scholar
  59. Gabaldón C, Gómez Ros LV, Pedreño MA, Ros Barceló A (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165:121–130PubMedCrossRefGoogle Scholar
  60. Gens JS, Fujiki M, Pickard BG (2000) Arabinoglactan protein and wall-associated kinases in a plasmalemmal reticulum with specialized vertices. Protoplasma 212:115–134PubMedCrossRefGoogle Scholar
  61. Gisel A, Barella S, Hempel FD, Zambryski PC (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889PubMedGoogle Scholar
  62. Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3PubMedCrossRefGoogle Scholar
  63. Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rouge P, Pont-Lezica R, Canut H (2006) Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90PubMedCrossRefGoogle Scholar
  64. Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076PubMedCrossRefGoogle Scholar
  65. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300PubMedGoogle Scholar
  66. Haffani Y, Silva-Gagliardi N, Sewter S, Aldea M, Zhao Z, Nakhamchik A, Cameron R, Goring D (2006) Altered expression of PERK receptor kinases in Arabidopsis leads to changes in growth and floral organ formation. Plant Signal Behav 1:251–260PubMedGoogle Scholar
  67. Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725PubMedCrossRefGoogle Scholar
  68. Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol 10:342–348PubMedCrossRefGoogle Scholar
  69. Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63PubMedCrossRefGoogle Scholar
  70. Hayashi T, Harada A, Sakai T, Takagi A (2006) Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion. Plant Cell Environ 29:661–672PubMedCrossRefGoogle Scholar
  71. Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222PubMedCrossRefGoogle Scholar
  72. Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680PubMedCrossRefGoogle Scholar
  73. Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164PubMedCrossRefGoogle Scholar
  74. Hématy K, Höfte H (2008) Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 11:321–328PubMedCrossRefGoogle Scholar
  75. Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou J-P, Höfte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17:922–931PubMedCrossRefGoogle Scholar
  76. Henry CA, Jordan JR, Kropf DL (1996) Localized membrane-wall adhesions in Pelvetia zygotes. Protoplasma 190:39–52CrossRefGoogle Scholar
  77. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166PubMedCrossRefGoogle Scholar
  78. Hu W-J, Lung J, Harding SA, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechol 17:808–812CrossRefGoogle Scholar
  79. Im K-H, Cosgrove DJ, Jones AM (2000) Subcellular localization of expansin mRNA in xylem cells. Plant Physiol 123:463–470PubMedCrossRefGoogle Scholar
  80. Ingber DE (2003) Tensegrity. I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173Google Scholar
  81. Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934PubMedCrossRefGoogle Scholar
  82. Johnson EG, Sparks JP, Dzikovski B, Crane BR, Gibson DM, Loria R (2008) Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals. Chem Biol 15:43–50PubMedCrossRefGoogle Scholar
  83. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  84. Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755PubMedCrossRefGoogle Scholar
  85. Kiba A, Sugimoto M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1998) Interaction between cell wall and plasma membrane via RGD motif is implicated in plant defense responses. Plant Cell Physiol 39:1245–1249Google Scholar
  86. Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521CrossRefGoogle Scholar
  87. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732PubMedCrossRefGoogle Scholar
  88. Kohorn BD (2000) Plasma membrane-cell wall contacts. Plant Physiol 124:31–38PubMedCrossRefGoogle Scholar
  89. Kohorn BD (2001) WAKs: cell wall associated kinases. Curr Opin Cell Biol 13:529–533PubMedCrossRefGoogle Scholar
  90. Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A, Byers N (2006) An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 46:307–316PubMedCrossRefGoogle Scholar
  91. Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848PubMedCrossRefGoogle Scholar
  92. Kutschera U (1995) Tissue pressure and cell turgor in axial plant organs: Implications for the organism theory of multicellularity. J Plant Physiol 146:126–132Google Scholar
  93. Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101:615–621PubMedCrossRefGoogle Scholar
  94. Lang-Pauluzzi I, Gunning BES (2000) A plasmolytic cycle: the fate of cytoskeletal elements. Protoplasma 212:174–185CrossRefGoogle Scholar
  95. Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142:831–838PubMedCrossRefGoogle Scholar
  96. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784PubMedCrossRefGoogle Scholar
  97. Leshem Y, Seri L, Levine A (2007) Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51:185–197PubMedCrossRefGoogle Scholar
  98. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291PubMedCrossRefGoogle Scholar
  99. Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682PubMedCrossRefGoogle Scholar
  100. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930PubMedCrossRefGoogle Scholar
  101. Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291PubMedCrossRefGoogle Scholar
  102. Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364CrossRefGoogle Scholar
  103. Lynch TM, Lintilhac PM (1997) Mechanical signals in plant development: a new method for single cell studies. Dev Biol 181:246–256PubMedCrossRefGoogle Scholar
  104. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedCrossRefGoogle Scholar
  105. Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–10PubMedCrossRefGoogle Scholar
  106. Marshall JG, Dumbroff EB (1999) Turgor regulation via cell wall adjustment in white spruce. Plant Physiol 119:313–319PubMedCrossRefGoogle Scholar
  107. Mathieu Y, Guern J, Spiro MD, O'Neill MA, Kates KA, Darvill A, Albersheim P (1998) The transient nature of the oligogalacturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides. Plant J 16:305–311CrossRefGoogle Scholar
  108. Matsubayashi Y (2003) Ligand-receptor pairs in plant peptide signaling. J Cell Sci 116:3863–3870PubMedCrossRefGoogle Scholar
  109. Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674PubMedCrossRefGoogle Scholar
  110. McQueen-Mason SJ, Rochange F (1999) Expansins in plant growth and development: an update on an emerging topic. Plant Biol 1:19–25CrossRefGoogle Scholar
  111. Mellersh DG, Heath MC (2001) Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13:413–424PubMedCrossRefGoogle Scholar
  112. Monteiro HP (2002) Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med 33:765–773PubMedCrossRefGoogle Scholar
  113. Moscatiello R, Mariani P, Sanders D, Maathuis FJM (2006) Transcriptional analysis of calcium-dependent and calcium-independent signaling pathways induced by oligogalacturonides. J Exp Bot 57:2847–2865PubMedCrossRefGoogle Scholar
  114. Müller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946PubMedCrossRefGoogle Scholar
  115. Nadeau JA, Sack FD (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697–1700PubMedCrossRefGoogle Scholar
  116. Nakagawa N, Sakurai N (2001) Cell wall integrity controls expression of endoxyloglucan transferase in tobacco BY2 cells. Plant Cell Physiol 42:240–244PubMedCrossRefGoogle Scholar
  117. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212PubMedCrossRefGoogle Scholar
  118. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395PubMedCrossRefGoogle Scholar
  119. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35CrossRefGoogle Scholar
  120. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176PubMedCrossRefGoogle Scholar
  121. Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. University of Chicago Press, ChicagoGoogle Scholar
  122. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294PubMedCrossRefGoogle Scholar
  123. Panteris E, Galatis B (2005) The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol 167:721–732PubMedCrossRefGoogle Scholar
  124. París R, Lamattina L, Casalongué CA (2007) Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol Biochem 45:80–86PubMedCrossRefGoogle Scholar
  125. Pilling E, Höfte H (2003) Feedback from the wall. Curr Opin Plant Biol 6:611–616PubMedCrossRefGoogle Scholar
  126. Popper ZA (2008) Evolution and diversity of green plant cell walls. Curr Opin Plant Biol 11:286–292PubMedCrossRefGoogle Scholar
  127. Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37CrossRefGoogle Scholar
  128. Reise J, Ney J, Kohorn BD (2003). WAKs: cell wall associated kinases. Rose J The plant cell wall. Blackwell, Oxford, pp. 223–236Google Scholar
  129. Ridley BL, O'Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967PubMedCrossRefGoogle Scholar
  130. Rinne PLH, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485PubMedGoogle Scholar
  131. Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-Nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130PubMedCrossRefGoogle Scholar
  132. Roy S, Watada AE, Wergin WP (1997) Characterization of the cell wall microdomain surrounding plasmodesmata in apple fruit. Plant Physiol 114:539–547PubMedGoogle Scholar
  133. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242.1–242.11CrossRefGoogle Scholar
  134. Schindler M, Meiners S, Cheresh DA (1989) RGD-dependent linkage between plant cell wall and plasma membrane: Consequences for growth. J Cell Biol 108:1955–1965PubMedCrossRefGoogle Scholar
  135. Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415PubMedCrossRefGoogle Scholar
  136. Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161PubMedCrossRefGoogle Scholar
  137. Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R, Govers F, Canut H (2004) High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61:502–509PubMedCrossRefGoogle Scholar
  138. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768PubMedCrossRefGoogle Scholar
  139. Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293PubMedCrossRefGoogle Scholar
  140. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a system approach to understanding plant cell walls. Science 306:2206–2211PubMedCrossRefGoogle Scholar
  141. Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boiler T, Kondorosi A (1994a) Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 5:319–330CrossRefGoogle Scholar
  142. Staehelin C, Granado J, Müller J, Wiemken A, Mellor RB, Felix G, Regenass M, Broughton WJ, Boller T (1994b) Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci U S A 91:2196–2200CrossRefGoogle Scholar
  143. Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303PubMedCrossRefGoogle Scholar
  144. Suzuki K, Amino S-I, Takeuchi Y, Komamine A (1990) Differences in the composition of the cell walls of two morphologically different lines of suspension-cultured Catharanthus roseus cells. Plant Cell Physiol 31:7–14Google Scholar
  145. Timmers ACJ, Auriac M-C, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628PubMedGoogle Scholar
  146. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Prome JC, Denarie J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673CrossRefGoogle Scholar
  147. Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root tips: structure and composition. J Cell Sci 107:3351–3361PubMedGoogle Scholar
  148. Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984PubMedCrossRefGoogle Scholar
  149. van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890PubMedCrossRefGoogle Scholar
  150. Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183PubMedCrossRefGoogle Scholar
  151. Williams M, Freshour G, Darvill A, Albersheim P, Hahn M (1996) An antibody Fab selected from a recombinant phage display library detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells. Plant Cell 8:673–685PubMedCrossRefGoogle Scholar
  152. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692PubMedGoogle Scholar
  153. Wojtaszek P (2000) Genes and plant cell walls: a difficult relationship. Biol Rev 75:437–475PubMedCrossRefGoogle Scholar
  154. Wojtaszek P, Baluška F, Kasprowicz A, Łuczak M, Volkmann D (2007) Domain-specific mechanosensory transmission of osmotic and enzymatic cell wall disturbances to the actin cytoskeleton. Protoplasma 230:217–230PubMedCrossRefGoogle Scholar
  155. Wyatt SE, Carpita NC (1993) The plant cytoskeleton-cell wall continuum. Trends Cell Biol 3:413–417PubMedCrossRefGoogle Scholar
  156. Xia Y (2005) Peptides as signals. Fleming A Intercellular communication in plants. Blackwell. Blackwell, Oxford, pp 27–48Google Scholar
  157. Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84CrossRefGoogle Scholar
  158. Zambryski P, Crawford K (2000) Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu Rev Cell Dev Biol 16:393–421PubMedCrossRefGoogle Scholar
  159. Zhou J, Wang B, Li Y, Wang Y, Zhu L (2007) Responses of Chrysanthemum cells to mechanical stimulation require intact microtubules and plasma membrane-cell wall adhesion. J Plant Growth Regul 26:55–68CrossRefGoogle Scholar
  160. Zonia L, Munnik T (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134:813–823PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ewelina Rodakowska
    • 1
  • Marta Derba-Maceluch
    • 1
  • Anna Kasprowicz
    • 1
  • Paweł Zawadzki
    • 1
  • Agnieszka Szuba
    • 2
  • Daniel Kierzkowski
    • 1
  • Przemysław Wojtaszek
    • 1
  1. 1.Department of Molecular and Cellular Biology, Faculty of BiologyAdam Mickiewicz UniversityPoland
  2. 2.Institute of Bioorganic ChemistryPolish Academy of SciencesPoland

Personalised recommendations