Skip to main content

Auxin and the Communication Between Plant Cells

  • Chapter
  • First Online:
Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Multicellularity allows to assign different functions to the individual cells. Cell fate could be defined by a stereotypic sequence of cell divisions or it might arise from intercellular communication between cells. Patterning in the totipotent plant cells results mainly from coordinative signals. Auxin is central in this respect, and this chapter ventures to give a survey on the role of auxin as a coordinative signal that regulates patterning of cell differentiation, cell division and cell expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ARF:

ADP-ribosylation factor

ARP:

Actin-related protein

BFA:

Brefeldin A

GFP:

Green fluorescent protein

IAA:

Indole-3-acetic acid

NAA:

1-Naphthaleneacetic acid

NPA:

Naphthylphthalamic acid

RFP:

Red fluorescent protein

TIBA:

2,3,5-Triiodobenzoic acid

References

  • Basu S, Sun H, Brian L, Quatrano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol 130:292–302

    Article  PubMed  CAS  Google Scholar 

  • Blaauw AH (1915) Licht und Wachstum II. Bot Zentralbl 7:465–532

    Google Scholar 

  • Buder J (1920) Neue phototropische Fundamentalversuche. Ber Dtsch Bot Ges 28:10–19

    Google Scholar 

  • Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation: NAA and 2,4-D activate different pathways. Plant Physiol 137:939–948

    Article  PubMed  CAS  Google Scholar 

  • Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Camus G (1949) Recherche sur le role des bourgeons dans les phenomenes de morphogenèse. Rev Cytol Biol Veg 11:1–199

    Google Scholar 

  • Chen JG (2001) Dual auxin signalling pathways control cell elongation and division. J Plant Growth Regul 20:255–264

    Article  CAS  Google Scholar 

  • Cholodny N (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentralbl 47:604–626

    CAS  Google Scholar 

  • Cooke TJ, Poli DB, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D (1987) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    Article  Google Scholar 

  • Drawin C, Drawin F (1880) Sensitiveness of plants to light: it's transmitted effect. In: The power of movement in plants. Murray, London, pp 574–592

    Google Scholar 

  • Dibb-Fuller JB, Morris DA (1992) Studies on the evolution of auxin carriers and phytotropin receptors: transmembrane auxin transport in unicellular and multicellular Chlorophyta. Planta 186:219–226

    Article  CAS  Google Scholar 

  • Digby J, Firn RD (1976) A critical assessment of the Cholodny-Went theory of shoot gravitropism. Curr Adv Plant Sci 8:953–960

    Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hašek J, Paciorek T, Petrašek J, Seifertová D, Tejos R, Meisel LA, Zažímalová E, Gadella TWJ, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brocke R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 105:4489–4494

    Article  PubMed  Google Scholar 

  • Dolk HE (1936) Geotropism and the growth substance. Recl Trav Bot Neerl 33:509–585

    Google Scholar 

  • Du Monceau D (1764) La physique des arbres. Winterschmidt, Nuremberg, pp 87–93

    Google Scholar 

  • Edelmann H (2001) Lateral redistribution of auxin is not the means for gravitropic differential growth of coleoptiles: a new model. Physiol Plant 112:119–126

    Article  PubMed  CAS  Google Scholar 

  • Fišerová J, Schwarzerová K, Petrášek J, Opartný S (2006) ARP2 and ARP3 are localized to sites of actin filament nucleation in tobacco BY-2 cells. Protoplasma 227:119–128

    Article  PubMed  CAS  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG (2004) Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci U S A 101:16379–16384

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  CAS  Google Scholar 

  • Gierer A, Meinhard H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  PubMed  CAS  Google Scholar 

  • Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nature 239:98–101

    Article  CAS  Google Scholar 

  • Godbolé R, Michalke W, Nick P, Hertel R (2000) Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles. Plant Biol 2:176–181

    Article  Google Scholar 

  • Goebel K (1908) Einleitung in die experimentelle Morphologie der Pflanzen. Teubner, Leipzig, pp 218–251

    Google Scholar 

  • Goldsmith MHM, Wilkins MB (1964) Movement of auxin in coleoptiles of Zea mays L. during geotropic stimulation. Plant Physiol 39:151–162

    CAS  Google Scholar 

  • Grabski S, Schindler M (1996) Auxins and cytokinins as antipodal modulators of elasticity within the actin network of plant cells. Plant Physiol 110:965–970

    PubMed  CAS  Google Scholar 

  • Green PB (1980) Organogenesis - a biophysical view. Annu Rev Plant Physiol 31:51–82

    Article  Google Scholar 

  • Gutjahr C, Riemann M, Müller A, Weiler EW, Nick P (2005) Cholodny-Went revisited - a role for jasmonate in gravitropism of rice coleoptiles. Planta 222:575–585

    Article  PubMed  CAS  Google Scholar 

  • Hanstein J (1860) Versuche über die Leitung des Saftes durch die Rinde. Jahrb Wiss Bot 2:392

    Google Scholar 

  • Heilbronn A (1917) Lichtabfall oder Lichtrichtung als Ursache der heliotropischen Reizung? Ber Dtsch Bot Ges 35:641–642

    Google Scholar 

  • Hertel R, Flory R (1968) Auxin movement in corn coleoptiles. Planta 82:123–144

    Article  CAS  Google Scholar 

  • Himmelspach R, Nick P (2001) Gravitropic microtubule orientation can be uncoupled from growth. Planta 212:184–189

    Article  PubMed  CAS  Google Scholar 

  • Holweg C, Süßlin C, Nick P (2004) Capturing in-vivo dynamics of the actin cytoskeleton. Plant Cell Physiol 45:855–863

    Article  PubMed  CAS  Google Scholar 

  • Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ 14:279–286

    Article  Google Scholar 

  • Iino M, Briggs WR (1984) Growth distribution during first positive phototropic curvature of maize coleoptiles. Plant Cell Environ 7:97–104

    Article  Google Scholar 

  • Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Anthony RG, Hussey PJ (2004) Green fluorescent protein-mTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor's actin depolymerizing activity in vitro. Plant Physiol 136:3990–3998

    Article  PubMed  CAS  Google Scholar 

  • Kirk DL (2003) Seeking the ultimate and proximate causes of Volvox multicellularity and cellular differentiation. Integr Comp Biol 43:247–253

    Article  CAS  Google Scholar 

  • Kögl F, Hagen-Smit J, Erxleben H (1934) Über ein neues Auxin (“Hetero-Auxin”) aus Harn. Hoppe-Seylers Z Physiol Chem 228:104–112

    Google Scholar 

  • Kutschera U, Bergfeld R, Schopfer P (1987) Cooperation of epidermal and inner tissues in auxin-mediated growth of maize coleoptiles. Planta 170:168–180

    Article  CAS  Google Scholar 

  • Lintilhac PM (1999) Towards a theory of cellularity - speculations on the nature of the living cell. Bioscience 49:60–68

    Article  Google Scholar 

  • Maisch J, Nick P (2007) Actin is involved in auxin-dependent patterning. Plant Physiol 143:1695–1704

    Article  PubMed  CAS  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • McCabe PF, Valentine TA, Forsberg S, Pennella R (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241

    Article  PubMed  CAS  Google Scholar 

  • Meinhard H (1976) Morphogenesis of lines and nets. Differentiation 6:117–123

    Article  Google Scholar 

  • Meinhard H (1986) The threefold subdivision of segments and the initiation of legs and wings in insects. Trends Genet 3:36–41

    Article  Google Scholar 

  • Mohr H (1972) Lectures on photomorphogenesis. Springer, Heidelberg

    Google Scholar 

  • Nagata T, Nemoto Y, Hasezava S (1992) Tobacco BY-2 cell line as the “Hela” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Furuya M (1996) Buder revisited - cell and organ polarity during phototropism. Plant Cell Environ 19:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Schäfer E, Furuya M (1992) Auxin redistribution during first positive phototropism in corn coleoptiles: microtubule reorientation and the Cholodny-Went theory. Plant Physiol 99:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Ehmann B, Schäfer E (1993) Cell communication, stochastic cell responses, and anthocyanin pattern in mustard cotyledons. Plant Cell 5:541–552

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Han M, An G. Auxin stimulates its own transport by shaping actin filaments. Plant Physiology, under revision

    Google Scholar 

  • Nick P, Heuing A, Ehmann B (2000) Plant chaperonins: a role in microtubule-dependent wall-formation? Protoplasma 211:234–244

    Article  CAS  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    Article  PubMed  CAS  Google Scholar 

  • Opatrný Z, Opatrná J (1976) The specificity of the effect of 2,4-D and NAA on the growth, micromorphology, and occurrence of starch in long-term Nicotiana tabacum L. cell strains. Biol Plant 18:359–365

    Google Scholar 

  • Paciorek T, Zažimalová E, Ruthardt N, Petrášek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Parker KE, Briggs WR (1990) Transport of indole-3-acetic acid during gravitopism of intact maize coleoptiles. Plant Physiol 94:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Freudenreich A, Heuing A, Opatrný Z, Nick P (1998) Heat shock protein 90 is associated with microtubules in tobacco cells. Protoplasma 202:161–174

    Article  Google Scholar 

  • Petrášek J, Elčkner M, Morris DA, Zažímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216:302–308

    Article  PubMed  CAS  Google Scholar 

  • Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression respresents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci U S A 96:12186–12191

    Article  PubMed  CAS  Google Scholar 

  • Priestley JH, Swingle CF (1929) Vegetative propagation from the standpoint of plant anatomy. USDA Tech Bull 151:1–98

    Google Scholar 

  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Roeland MH, Merks RMH, Van de Peer Y, Inze D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390

    Article  CAS  Google Scholar 

  • Rorabaugh PA, Salisbury FB (1989) Gravitropism in higher plant shoots VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Plant Physiol 91:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Rothwell GW, Lev-Yadun S (2005) Evidence of polar auxin flow in 375 million-year-old fossil wood. Am J Bot 92:903–906

    Article  Google Scholar 

  • Sachs T (1968) On the determination of the pattern of vascular tissue in peas. Ann Bot 33:781–790

    Google Scholar 

  • Sachs T (1975) The control of the differentiation of vascular networks. Ann Bot 39:197–204

    Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vacular tissues. Adv Bot Res 9:152–262

    Google Scholar 

  • Scarpella E, Marcos D, Friml D, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Schoute JC (1913) Beiträge zur Blattstellungslehre. I. Die Theorie. Rec Trav Bot Neerl 10:153–325

    Google Scholar 

  • Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292:1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Snow M, Snow R (1931) Experiments on phyllotaxis. I. The effect of isolating a primordium. Philos Trans R Soc Lond Ser B 221:1–43

    Article  Google Scholar 

  • Spemann H (1936) Experimentelle Beitrage zu einer Theorie der Entwicklung. Springer, Berlin

    Google Scholar 

  • Stals H, Inzé D (2001) When plant cells decide to divide. Trends Plant Sci 6:359–364

    Article  PubMed  CAS  Google Scholar 

  • Stein W (1993) Modeling the evolution of stelar architecture in vascular plants. Int J Plant Sci 154:229–263

    Article  Google Scholar 

  • Sweeney BM, Thimann KV (1937) The effect of auxin on cytoplasmic streaming. J Gen Physiol 21:123–135

    Article  PubMed  Google Scholar 

  • Thimann KV (1935) On the plant growth hormone produced by Rhizopus suinus. J Biol Chem 109:279–291

    CAS  Google Scholar 

  • Thimann KV, Biradivolu R (1994) Actin and the elongation of plant cells II: the role of divalent ions. Protoplasma 183:5–9

    Article  CAS  Google Scholar 

  • Thimann KV, Reese K, Nachmikas VT (1992) Actin and the elongation of plant cells. Protoplasma 171:151–166

    Article  Google Scholar 

  • Trewavas, AJ (1992) Forum: What remains of the Cholodny-Went theory? Plant Cell Environ 15:759–794

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol 237:37–72

    Article  Google Scholar 

  • Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Keith RD, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg C, Willensen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem is determined by directional signalling. Nature 378:62–65

    Article  PubMed  Google Scholar 

  • Waller F, Nick P (1997) Response of actin microfilaments during phytochrome-controlled growth of maize seedlings. Protoplasma 200:154–162

    Article  CAS  Google Scholar 

  • Waller F, Riemann M, Nick P (2002) A role for actin-driven secretion in auxin-induced growth. Protoplasma 219:72–81

    Article  PubMed  CAS  Google Scholar 

  • Wang QY, Nick P (1998) The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma 204:22–33

    Article  PubMed  CAS  Google Scholar 

  • Weismann A (1894) Aufsätze über Vererbung und verwandte Fragen. Fischer, Jena

    Google Scholar 

  • Went F (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Akad Weten 30:10–19

    Google Scholar 

  • Xu J, Scheres B (2005) Cell polarity: ROPing the ends together. Curr Opin Plant Biol 8:613–618

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Golden JW (2001) PatS and products of nitrogen fixation control heterocyst pattern. J Bacteriol 183:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann W (1965) Die Telomtheorie. Fischer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nick, P. (2009). Auxin and the Communication Between Plant Cells. In: Mancuso, S., Balu¿ka, F. (eds) Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89228-1_1

Download citation

Publish with us

Policies and ethics