Skip to main content

Computing Stable Skeletons with Particle Filters

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5351)

Abstract

We present a novel method to obtain high quality skeletons of binary shapes. The obtained skeletons are connected and one pixel thick. They do not require any pruning or any other post-processing. The computation is composed of two major parts. First, a small set of salient contour points is computed. We use Discrete Curve Evolution, but any other robust method could be used. Second, particle filters are used to obtain the skeleton. The main idea is that the particles walk along the skeletal paths between pairs of the salient points. We provide experimental results that clearly demonstrate that the proposed method significantly outperforms other well-known methods for skeleton computation.

Keywords

  • Skeleton
  • shape
  • pruning
  • skeletal paths
  • particle filters

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89197-0_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-89197-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, H.: Biological shape and visual science (part i). J. Theoretical Biology 38, 205–287 (1973)

    CrossRef  Google Scholar 

  2. Siddiqi, K., Shkoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. In: ICCV, pp. 222–229 (1998)

    Google Scholar 

  3. Zhu, S., Yuille, A.: Forms: a flexible object recognition and modeling system. In: ICCV (1995)

    Google Scholar 

  4. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. PAMI 26, 550–571 (2004)

    CrossRef  Google Scholar 

  5. Macrini, D., Siddiqi, K., Dickinson, S.: From skeletons to bone graphs: Medial abstraction for object recognition. In: CVPR (2008)

    Google Scholar 

  6. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. PAMI 30, 1282–1292 (2008)

    CrossRef  Google Scholar 

  7. Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. PAMI 29, 449–462 (2007)

    CrossRef  Google Scholar 

  8. Bai, X., Yang, X.W., Yu, D.G., Latecki, L.J.: Skeleton-based shape classification using path similarity. Int. Journal of Pattern Recog. and Artif. Intell. 22, 733–746 (2008)

    CrossRef  Google Scholar 

  9. Ogniewicz, R.L., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognition 28, 343–359 (1995)

    CrossRef  Google Scholar 

  10. Shaked, D., Bruckstein, A.M.: Pruning medial axes. CVIU 69, 156–169 (1998)

    Google Scholar 

  11. Choi, W.P., Lam, K.M., Siu, W.C.: Extraction of the euclidean skeleton based on a connectivity criterion. Pattern Recognition 36, 721–729 (2003)

    CrossRef  MATH  Google Scholar 

  12. Bai, X., Latecki, L.J.: Discrete skeleton evolution. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 362–374. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  13. Adluru, N., Latecki, L.J., Lakämper, R., Young, T., Bai, X., Gross, A.: Contour grouping based on local symmetry. In: ICCV (2007)

    Google Scholar 

  14. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. PAMI 22, 1185–1190 (2000)

    CrossRef  Google Scholar 

  15. Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: ECCV, pp. 343–356 (1998)

    Google Scholar 

  16. Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. IJCV 29, 5–28 (1998)

    CrossRef  Google Scholar 

  17. Black, M.J., Fleet, D.J.: Probabilistic detection and tracking of motion boundaries. IJCV 38, 231–245 (2000)

    CrossRef  MATH  Google Scholar 

  18. Pérez, P., Blake, A., Gangnet, M.: Jetstream: Probabilistic contour extraction with particles. In: ICCV (2001)

    Google Scholar 

  19. Isard, M.: Pampas: Real-valued graphical models for computer vision. In: CVPR, pp. 613–620 (2003)

    Google Scholar 

  20. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: CVPR, pp. 605–612 (2003)

    Google Scholar 

  21. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    CrossRef  MATH  Google Scholar 

  22. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-gaussian bayesian state estimation. IEE Proceedings-F 140, 107–113 (1993)

    Google Scholar 

  23. Golland, P., Grimson, E.: Fixed topology skeletons. In: CVPR (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, X., Yang, X., Latecki, L.J., Xu, Y., Liu, W. (2008). Computing Stable Skeletons with Particle Filters. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)