Skip to main content

Evolutionary Computation Using Interaction among Genetic Evolution, Individual Learning and Social Learning

  • Conference paper
  • 1151 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5351)

Abstract

This paper studies the characteristics of interaction among genetic evolution, individual learning and social learning using an evolutionary computation system with NK fitness landscape, both under static and dynamic environments. We show conditions for effective social learning: at least 1.5 times lighter cost of social learning than that of individual learning, beneficial teaching action, low epistasis and dynamic environment.

Keywords

  • Evolutionary computation
  • Genetic evolution
  • Individual learning
  • Social learning
  • NK fitness landscape

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89197-0_17
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-89197-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems 1, 495–502 (1987)

    MATH  Google Scholar 

  2. Mayley, G.: Landscapes, learning costs and genetic assimilation. Evolutionary Computation 4(3), 213–234 (1996)

    CrossRef  Google Scholar 

  3. Best, M.L.: How culture can guide evolution: an inquiry into gene/meme enhancement and opposition. Adaptive Behavior 7(3-4), 289–306 (1999)

    CrossRef  Google Scholar 

  4. Arita, T., Suzuki, R.: Interactions between Learning and Evolution – Outstanding Strategy generated by the Baldwin Effect. In: Proceedings of Artificial life VII, pp. 196–205 (2000)

    Google Scholar 

  5. Tomasello, M.: Cultural Origin of Human Cognition. Harvard University Press (1999)

    Google Scholar 

  6. Kauffman, S.: Adaptation on rugged fitness landscapes. In: Stein, D. (ed.) Lectures in the Sciences of Complexity, pp. 527–618. Addison-Wesley, Reading (1989)

    Google Scholar 

  7. Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of N-K fitness functions. IEEE Transactions on Evolutionary Computation 4(4), 373–379 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hashimoto, T., Warashina, K. (2008). Evolutionary Computation Using Interaction among Genetic Evolution, Individual Learning and Social Learning. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)