Skip to main content

An ATP of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5351)

Abstract

We introduce an Automatic Theorem Prover (ATP) of a dual tableau system for a relational logic for order of magnitude qualitative reasoning, which allows us to deal with relations such as negligibility, non-closeness and distance. Dual tableau systems are validity checkers that can serve as a tool for verification of a variety of tasks in order of magnitude reasoning, such as the use of qualitative sum of some classes of numbers. In the design of our ATP, we have introduced some heuristics, such as the so called phantom variables, which improve the efficiency of the selection of variables used un the proof.

Keywords

  • Modal Logic
  • Proof System
  • Relational Logic
  • Proof Tree
  • Qualitative Reasoning

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Partially supported by Spanish projects TIN2006-15455-C03-01 and P6-FQM-02049.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89197-0_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-89197-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-Dimensional Modal Logic as a Framework for Spatio-Temporal Reasoning. Applied Intelligence 17(3), 239–251 (2002)

    CrossRef  MATH  Google Scholar 

  2. Burrieza, A., Mora, A., Ojeda-Aciego, M., Orłowska, E.: Implementing a relational system for order-of-magnitude reasoning. Technical Report (2008)

    Google Scholar 

  3. Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A Logic for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 210–219. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Burrieza, A., Muñoz, E., Ojeda-Aciego, M.: Order of magnitude qualitative reasoning with bidirectional negligibility. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 370–378. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Burrieza, A., Ojeda-Aciego, M.: A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. Fundamenta Informaticae 68, 21–46 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Burrieza, A., Ojeda-Aciego, M., Orłowska, E.: Relational approach to order-of-magnitude reasoning. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS (LNAI), vol. 4342, pp. 105–124. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Dague, P.: Symbolic reasoning with relative orders of magnitude. In: Proc. 13th Intl. Joint Conference on Artificial Intelligence, pp. 1509–1515. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  8. Dallien, J., MacCaull, W.: RelDT: A relational dual tableaux automated theorem prover, http://www.logic.stfx.ca/reldt/

  9. Formisano, A., Orłowska, E., Omodeo, E.: A PROLOG tool for relational translation of modal logics: A front-end for relational proof systems. In: Beckert, B. (ed.) TABLEAUX 2005 Position Papers and Tutorial Descriptions, Fachberichte Informatik No 12, Universitaet Koblenz-Landau, pp. 1–10 (2005), http://www.di.univaq.it/TARSKI/transIt/

  10. Golińska-Pilarek, J., Muñoz-Velasco, E.: Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance. Technical Report (2008)

    Google Scholar 

  11. Golińska-Pilarek, J., Orłowska, E.: Relational logics and their applications. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS (LNAI), vol. 4342, pp. 125–161. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  12. MacCaull, W., Orłowska, E.: Correspondence results for relational proof systems with application to the Lambek calculus. Studia Logica 71, 279–304 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Mavrovouniotis, M.L., Stephanopoulos, G.: Reasoning with orders of magnitude and approximate relations. In: Proc. 6th National Conference on Artificial Intelligence. The AAAI Press/The MIT Press (1987)

    Google Scholar 

  14. Mavrovouniotis, M.L.: A belief framework for order-of-magnitude reasoning and other qualitative relations. Artificial Intelligence in Engineering 11(2), 121–134 (1997)

    CrossRef  Google Scholar 

  15. Orłowska, E.: Relational interpretation of modal logics. In: Andréka, H., Monk, D., Nemeti, I. (eds.) Algebraic Logic, Col. Math. Soc. J. Bolyai., vol. 54, pp. 443–471. North Holland, Amsterdam (1988)

    Google Scholar 

  16. Raiman, O.: Order of magnitude reasoning. Artificial Intelligence 51, 11–38 (1991)

    CrossRef  Google Scholar 

  17. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connections. In: Proc. of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR 1992), pp. 165–176 (1992)

    Google Scholar 

  18. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Polish Scientific Publishers, Warsaw (1963)

    MATH  Google Scholar 

  19. Sánchez, M., Prats, F., Piera, N.: Una formalizacin de relaciones de comparabilidad en modelos cualitativos. Boletín de la AEPIA (Bulletin of the Spanish Association for AI) 6, 15–22 (1996)

    Google Scholar 

  20. Travé-Massuyès, L., Ironi, L., Dague, P.: Mathematical Foundations of Qualitative Reasoning. AI Magazine, American Asociation for Artificial Intelligence, 91–106 (2003)

    Google Scholar 

  21. Wolter, F., Zakharyaschev, M.: Qualitative spatio-temporal representation and reasoning: a computational perspective. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golińska-Pilarek, J., Mora, A., Muñoz-Velasco, E. (2008). An ATP of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)