Skip to main content

Sentence Compression by Removing Recursive Structure from Parse Tree

  • Conference paper
  • 1147 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5351)


Sentence compression is a task of generating a grammatical short sentence from an original sentence, retaining the most important information. The existing methods of removing the constituents in the parse tree of an original sentence cannot deal with recursive structures which appear in the parse tree. This paper proposes a method to remove such structure and generate a grammatical short sentence. Compression experiments have shown the method to provide an ability to sentence compression comparable to the existing methods and generate good compressed sentences for sentences including recursive structures, which the previous methods failed to compress.


  • sentence compression
  • text summarization
  • phrase structure
  • recursive structure
  • maximum entropy method

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89197-0_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-89197-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, A.L., Della Pietra, V.J., Della Pietra, S.A.: A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics 22(1), 39–71 (1996)

    Google Scholar 

  2. Knight, K., Marcu, D.: Statistics-Based Summarization – Step One: Sentence Compression. In: AAAI/IAAI 2000, pp. 703–710. MIT Press, Cambridge (2000)

    Google Scholar 

  3. Knight, K., Marcu, D.: Summarization beyond Sentence Extraction: A Probabilistic Approach to Sentence Compression. Artificial Intelligence 139, 91–107 (2002)

    CrossRef  MATH  Google Scholar 

  4. Mani, I.: Automatic Summarization. John Benjamins, Philadelphia (2001)

    CrossRef  MATH  Google Scholar 

  5. Nguyen, M.L., Horiguchi, S., Shimazu, A., Ho, T.B.: Example-Based Sentence Reduction Using the Hidden Markov Model. ACM Trans. on Asian Language Information Processing 3(2), 146–158 (2004)

    CrossRef  Google Scholar 

  6. Papineni, K., Roukos, S., Word, T., Zhu, W.J.: BLEU: A Method for Automatic Evaluation of Machine Translation. In: ACL 2001, pp. 311–318. ACL, Morristown (2001)

    Google Scholar 

  7. Turner, J., Charniak, E.: Supervised and Unsupervised Learning for Sentence Compression. In: ACL 2005, pp. 290–297. ACL, Morristown (2005)

    Google Scholar 

  8. Unno, Y., Ninomiya, T., Miyao, Y., Tsujii, J.: Trimming CFG Parse Trees for Sentence Compression Using Machine Learning Approaches. In: COLING/ACL 2006, pp. 850–857. ACL, Morristown (2006)

    Google Scholar 

  9. Vandeghinste, V., Pan, Y.: Sentence Compression for Automated Subtitling: A Hybrid Approach. In: ACL 2004 Workshop on Text Summarization, pp. 89–95. ACL, Morristown (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Egawa, S., Kato, Y., Matsubara, S. (2008). Sentence Compression by Removing Recursive Structure from Parse Tree. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)