Skip to main content

Alternative Formulations of the Theory of Evidence Based on Basic Plausibility and Commonality Assignments

  • Conference paper
PRICAI 2008: Trends in Artificial Intelligence (PRICAI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5351))

Included in the following conference series:

  • 1335 Accesses

Abstract

In this paper we introduce indeed two alternative formulations of the theory of evidence by proving that both plausibility and commonality functions share the same combinatorial structure of sum function of belief functions, and computing their Moebius inverses called basic plausibility and commonality assignments. The equivalence of the associated formulations of the ToE is mirrored by the geometric congruence of the related simplices. Applications to the probabilistic approximation problem are briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  2. Dempster, A.: Upper and lower probabilities generated by a random closed interval. Annals of Mathematical Statistics 39, 957–966 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xiong, W., Luo, X., Ju, S.: An analysis of a defect in Dempster-Shafer theory. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, pp. 793–796 (2001)

    Google Scholar 

  4. Kohlas, J.: Mathematical foundations of evidence theory. In: Coletti, G., Dubois, D., Scozzafava, R. (eds.) Mathematical Models for Handling Partial Knowledge in Artificial Intelligence, pp. 31–64. Plenum Press (1995)

    Google Scholar 

  5. Shafer, G.: Allocations of probability. Annals of Probability 7(5), 827–839 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aigner, M.: Combinatorial Theory. In: Classics in Mathematics. Springer, Heidelberg (1979)

    Google Scholar 

  7. Cuzzolin, F.: A geometric approach to the theory of evidence. IEEE Transactions on Systems, Man and Cybernetics - Part C (2008)

    Google Scholar 

  8. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. International Journal on Man-Machine Studies 30, 525–536 (1989)

    Article  MATH  Google Scholar 

  10. Bauer, M.: Approximation algorithms and decision making in the Dempster-Shafer theory of evidence–an empirical study. International Journal of Approximate Reasoning 17, 217–237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguyen, H.T.: On random sets and belief functions. J. Mathematical Analysis and Applications 65, 531–542 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hestir, H., Nguyen, H., Rogers, G.: A random set formalism for evidential reasoning. In: Conditional Logic in Expert Systems, pp. 309–344. North-Holland, Amsterdam (1991)

    Google Scholar 

  13. Fagin, R., Halpern, J.Y.: Uncertainty, belief and probability. In: Proc. of IJCAI 1988, pp. 1161–1167 (1988)

    Google Scholar 

  14. Cuzzolin, F.: Geometry of upper probabilities. In: Proceedings of ISIPTA 2003 (2003)

    Google Scholar 

  15. Smets, Ph.: The nature of the unnormalized beliefs encountered in the transferable belief model. In: Proceedings of UAI 1992, p. 292. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  16. Cobb, B., Shenoy, P.: On the plausibility transformation method for translating belief function models to probability models. International Journal of Approximate Reasoning 41(3), 314–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cuzzolin, F.: Two new Bayesian approximations of belief functions based on convex geometry. IEEE Transactions on Systems, Man and Cybernetics part B 37(4), 993–1008 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuzzolin, F. (2008). Alternative Formulations of the Theory of Evidence Based on Basic Plausibility and Commonality Assignments. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics