Skip to main content

Temporal Data Mining for Educational Applications

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5351)

Abstract

Intelligent tutoring systems (ITSs) acquire rich data about studentsÖ behavior during learning; data mining techniques can help to describe, interpret and predict student behavior, and to evaluate progress in relation to learning outcomes. This paper surveys a variety of data mining techniques for analyzing how students interact with ITSs, including methods for handling hidden state variables, and for testing hypotheses. To illustrate these methods we draw on data from two ITSs for math instruction. Educational datasets provide new challenges to the data mining community, including inducing action patterns, designing distance metrics, and inferring unobservable states associated with learning.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-89197-0_10
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-89197-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (Retrieved July 8, 2006), http://www.ed.gov/nclb/landing.jhtml

  2. Beal, C.R., Qu, L., Lee, H.: Classifying learner engagement through integration of multiple data sources. In: Proceedings of the 21st National Conference on Artificial Intelligence. AAAI Press, Menlo Park (2006)

    Google Scholar 

  3. Koedinger, K.R., Corbett, A.T., Ritter, S., Shapiro, L.J.: Carnegie Learnings Cognitive Tutor: Summary of research results. Carnegie Learning, Pittsburgh (2000)

    Google Scholar 

  4. Baker, R.S., Corbett, A.T., Koedinger, K.R., Roll, I.: Detecting when students game the system, across tutor subjects and classroom cohorts. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 220–224. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. Beck, J.: Engagement tracing: Using response times to model student disengagement. In: Looi, C., McCalla, G., Bredeweg, B., Breuker, J. (eds.) Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology, pp. 88–95. IOS Press, Amsterdam (2005)

    Google Scholar 

  6. Stevens, R., Johnson, D., Soller, A.: Probabilities and prediction: Modeling the development of scientific problem solving skills. Cell Biology Education 4, 42–57 (2005)

    CrossRef  Google Scholar 

  7. Sutton, D., Cohen, P.R.: Very predictive Ngrams for space-limited probabilistic models. In: Pfenning, F., et al. (eds.) Advances in intelligent data analysis V, pp. 134–142. Springer, Berlin (2003)

    Google Scholar 

  8. Beal, C.R., Mitra, S., Cohen, P.R.: Modeling learning patterns of students with a tutoring system using Hidden Markov Models. In: Proceedings of the 13th International Conference on Artificial Intelligence in Education (AIED), Rey, CA (2006) (July 2007)

    Google Scholar 

  9. Ramoni, M., Sebastiani, P., Cohen, P.R.: Bayesian clustering by dynamics. Machine Learning 47, 91–121 (2001)

    CrossRef  MATH  Google Scholar 

  10. Beal, C.R., Cohen, P.R.: Computational methods for evaluating student and group learning histories in intelligent tutoring systems. In: Looi, C., McCalla, G., Bredeweg, B., Breuker, J. (eds.) Artificial Intelligence in Education: Supporting learning through intelligent and socially-informed technology, pp. 80–87. IOS Press, Amsterdam (2005)

    Google Scholar 

  11. Cohen, P.R.: Empirical methods for artificial intelligence. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beal, C.R., Cohen, P.R. (2008). Temporal Data Mining for Educational Applications. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)