Skip to main content

YARS: A Physical 3D Simulator for Evolving Controllers for Real Robots

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5325)


This paper presents YARS (Yet Another Robot Simulator), which was initially developed in the context of evolutionary robotics (ER), yet includes features which are also of benefit to those outside of this field. An experiment in YARS is defined by a single XML file, which includes the simulator configuration, the (randomisable) environment, and any number of (mobile) robots. Robots are either controlled through an automatised communication, or by dynamically loaded C++ programs. Therefore, YARS, although still under active development, is comparable with commercial and open-source robot simulators which include a physics engine such as Webots and Breve but with a much stronger focus on requirements originating from the field of evolutionary robotics.


  • Recurrent Neural Network
  • Description Language
  • Real Robot
  • Evolve Controller
  • Real Hardware

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Floreano, D., Urzelai, J.: Evolutionary robots with on-line self-organization and behavioral fitness. Neural Netw. 13(4-5), 431–443 (2000)

    CrossRef  Google Scholar 

  2. Michel, O.: Khepera simulator 2.0 (last visited: August 2008),

  3. Michel, O.: Webots (last visited: August 2008),

  4. Leger, C.: Darwin2k (last visited: August 2008),

  5. MSC Software: Adams (last visited: August 2008),

  6. Yobotics Inc.: Yobotics website (last visited: August 2008),

  7. Koenig, N., Polo, J.: Gazebo (last visited: August 2008),

  8. Klein, J.: breve: a 3d simulation environment for the simulation of decentralized systems and artificial life. In: Proceedings of Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems, Sydney, Australia. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot simulator for research and education. In: Proceedings of the 2007 IEEE Conference on Robotics and Automation (2007)

    Google Scholar 

  10. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)

    Google Scholar 

  11. von Twickel, A., Pasemann, F.: Reflex-oscillations in evolved single leg neurocontrollers for walking machines. Natural Computing 6(3), 311–337 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Manoonpong, P.: Neural Preprocessing and Control of Reactive Walking Machines Towards Versatile Artificial Perception-Action Systems. In: Cognitive Technologies. Springer, Heidelberg (2007)

    Google Scholar 

  13. Markelić, I., Zahedi, K.: An evolved neural network for fast quadrupedal locomotion. In: Xie, M., Dubowsky, S. (eds.) Advances in Climbing and Walking Robots, Proceedings of 10th International Conference (CLAWAR 2007), pp. 65–72. World Scientific Publishing Company, Singapore (2007)

    CrossRef  Google Scholar 

  14. Popp, J.: sphericalrobots (last visited: August 2008),

  15. Wischmann, S., Hülse, M., Pasemann, F.: (Co)Evolution of (de)centralized neural control for a gravitationally driven machine. Advances in Artificial Life, 179–188 (2005)

    Google Scholar 

  16. Smith, R.: ODE (last visited: August 2008),

  17. Geng, T., Porr, B., Wörgötter, F.: Fast biped walking with a sensor-driven neuronal controller and real-time online learning. The International Journal of Robotics Research 25(3), 243–259 (2006)

    CrossRef  Google Scholar 

  18. Ghazi-Zahedi, K.M.: Self-Regulating Neurons. A model for synaptic plasticity in artificial recurrent neural networks. PhD thesis, University of Osnabrück (2008)

    Google Scholar 

  19. Zahedi, K., Hülse, M.: ISEE – integrated structure envolution environment (last visited: August 2008),

  20. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16(4), 294–296 (2004)

    CrossRef  Google Scholar 

  21. Laue, T., Spiess, K., Röfer, T.: Simrobot — a general physical robot simulator and its application in robocup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  22. Mayer, N., Boedecker, J., da Silva Guerra, R., Obst, O., Asada, M.: 3d2real: Simulation league finals in real robots. In: RoboCup 2006: Robot Soccer World Cup X, pp. 25–34 (2007)

    Google Scholar 

  23. Clark, J., Lipkin, D., Marsh, J., Thompson, H., Walsh, N., Zilles, S.: XSL Transformations (XSLT) Version 1.0. W3C (1999)

    Google Scholar 

  24. The RoboCup Federation: Robocup official site (last visited: August 2008),

  25. Sony: Sony aibo europe (last visited: August 2008),

  26. Röfer, T., Laue, T., Burkhard, H.D., Hoffmann, J., Jüngel, M., Göhring, D., Düffert, U., Spranger, M., Altmeyer, B., Goetzke, V., von Stryk, O., Brunn, R., Dassler, M., Kunz, M., Risler, M., Stelzer, M., Thomsas, D., Uhrig, S., Schwiegelshohn, U., Dahm, I., Hebbel, M., Nistico, W., Schumann, C., Wachter, M.: Germanteam 2004 (2004) (last visited: August 2008),

  27. Zahedi, K., Pasemann, F.: Adaptive behavior control with self-regulating neurons. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 196–205. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  28. Ashby, W.R.: Desgin for a brain. Chapman & Hall Ltd., London (1954)

    Google Scholar 

  29. Bender, J.: Impulse-based dynamic simulation (last visited: August 2008),

  30. Persistence of Vision Raytracer Pty. Ltd.: Povray – the persistence of vision raytracer (last visited: August 2008),

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zahedi, K., von Twickel, A., Pasemann, F. (2008). YARS: A Physical 3D Simulator for Evolving Controllers for Real Robots. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2008. Lecture Notes in Computer Science(), vol 5325. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89075-1

  • Online ISBN: 978-3-540-89076-8

  • eBook Packages: Computer ScienceComputer Science (R0)