Skip to main content

Scenario Tree Approximation and Risk Aversion Strategies for Stochastic Optimization of Electricity Production and Trading

  • Chapter

Part of the book series: Energy Systems ((ENERGY))

Summary

Dynamic stochastic optimization techniques are highly relevant for applications in electricity production and trading since there are uncertainty factors at different time stages (e.g., demand, spot prices) that can be described reasonably by statistical models. In this paper, two aspects of this approach are highlighted: scenario tree approximation and risk aversion. The former is a procedure to replace a general statistical model (probability distribution), which makes the optimization problem intractable, suitably by a finite discrete distribution. Our methods rest upon suitable stability results for stochastic optimization problems. With regard to risk aversion we present the approach of polyhedral risk measures. For stochastic optimization problems minimizing risk measures from this class it has been shown that numerical tractability as well as stability results known for classical (nonrisk-averse) stochastic programs remain valid. In particular, the same scenario approximation methods can be used. Finally, we present illustrative numerical results from an electricity portfolio optimization model for a municipal power utility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk.Mathematical Finance, 9:203–228, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, and H. Ku. Coherent multiperiod risk adjusted values and Bellman's principle.Annals of Operations Research,152:5–22, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Blaesig.Risikomanagement in der Stromerzeugungs—und Handelsplanung, volume 113 ofAachener Beitrge zur Energieversorgung. Klinkenberg, Aachen, Germany, 2007. PhD Thesis.

    Google Scholar 

  4. M.S. Casey and S. Sen. The scenario generation algorithm for multistage stochastic linear programming.Mathematics of Operations Research, 30:615– 631, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.A.H. Dempster. Sequential importance sampling algorithms for dynamic stochastic programming.Zapiski Nauchnykh Seminarov POMI, 312:94–129, 2004.

    Google Scholar 

  6. J. Dupačová, G. Consigli, and S.W. Wallace. Scenarios for multistage stochastic programs.Annals of Operations Research, 100:25–53, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Eichhorn.Stochastic Programming Recourse Models: Approximation, Risk aversion, Applications in Energy. PhD thesis, Department of Mathematics, Humboldt University, Berlin, 2007.

    Google Scholar 

  8. A. Eichhorn and W. Römisch. Polyhedral risk measures in stochastic programming.SIAM Journal on Optimization, 16:69–95, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Eichhorn and W. Römisch. Mean-risk optimization models for electricity portfolio management. InProceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Stockholm, Sweden, 2006.

    Google Scholar 

  10. A. Eichhorn and W. Römisch. Stability of multistage stochastic programs incorporating polyhedral risk measures.Optimization, 57:295–318, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Eichhorn, W. Römisch, and I. Wegner. Mean-risk optimization of electricity portfolios using multiperiod polyhedral risk measures. InIEEE St. Petersburg PowerTech Proceedings, 2005.

    Google Scholar 

  12. S.-E. Fleten and T.K. Kristoffersen. Short-term hydropower production planning by stochastic programming.Computers and Operations Research, 35:2656– 2671, 2008.

    Article  MATH  Google Scholar 

  13. S.-E. Fleten, S.W. Wallace, and W.T. Ziemba. Hedging electricity portfolios via stochastic programming. In C. Greengard and A. Ruszczyński, editors,Decision Making under Uncertainty: Energy and Power, volume 128 ofIMA Volumes in Mathematics and its Applications. Springer, New York, pages 71–93, 2002.

    Google Scholar 

  14. H. Föllmer and A. Schied.Stochastic Finance. An Introduction in Discrete Time, volume 27 ofDe Gruyter Studies in Mathematics. Walter de Gruyter, Berlin, 2nd edition, 2004.

    Google Scholar 

  15. M. Frittelli and G. Scandolo. Risk measures and capital requirements for processes.Mathematical Finance, 16:589–612, 2005.

    Article  MathSciNet  Google Scholar 

  16. S. Graf and H. Luschgy.Foundations of Quantization for Probability Distributions, volume 1730 ofLecture Notes in Mathematics. Springer, Berlin, 2000.

    Google Scholar 

  17. C. Greengard and A. Ruszczyński, editors,Decision Making under Uncertainty: Energy and Power, volume 128 ofIMA Volumes in Mathematics and its Applications. Springer, New York, 2002.

    Google Scholar 

  18. N. Gröwe-Kuska, K.C. Kiwiel, M.P. Nowak, W. Römisch, and I. Wegner. Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation. In C. Greengard and A. Ruszczyński, editors,Decision Making under Uncertainty: Energy and Power, volume 128 ofIMA Volumes in Mathematics and its Applications. Springer, New York, pages 39–70, 2002.

    Chapter  Google Scholar 

  19. N. Gröwe-Kuska and W. Römisch. Stochastic unit commitment in hydro-thermal power production planning. In S. W. Wallace and W. T. Ziemba, editors,Applications of Stochastic Programming, MPS/SIAM Series on Optimization, pages 633–653. SIAM, Philadelphia, PA, USA, 2005.

    Google Scholar 

  20. H. Heitsch.Stabilität und Approximation stochastischer Optimierungsprobleme. PhD thesis, Department of Mathematics, Humboldt University, Berlin, 2007.

    MATH  Google Scholar 

  21. H. Heitsch and W. Römisch. Scenario reduction algorithms in stochastic programming.Computational Optimization and Applications, 24:187–206, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Heitsch and W. Römisch. Stability and scenario trees for multistage stochastic programs. In G. Infanger, editor,Stochastic Programming—The State of the Art. 2009. to appear.

    Google Scholar 

  23. H. Heitsch and W. Römisch. Scenario tree modeling for multistage stochastic programs.Mathematical Programming, to appear, 2009.

    Google Scholar 

  24. H. Heitsch, W. Römisch, and C. Strugarek. Stability of multistage stochastic programs.SIAM Journal on Optimization, 17:511–525, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Hochreiter and G. Ch. Pflug. Financial scenario generation for stochastic multi-stage decision processes as facility location problems.Annals of Operations Research, 152:257–272, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Hochreiter, G. Ch. Pflug, and D. Wozabal. Multi-stage stochastic electricity portfolio optimization in liberalized energy markets. InSystem Modeling and Optimization, IFIP International Federation for Information Processing. Springer, Boston, MA, USA, pages 219–226, 2006.

    Chapter  Google Scholar 

  27. K. Høyland, M. Kaut, and S.W. Wallace. A heuristic for moment-matching scenario generation.Computational Optimization and Applications, 24:169–185, 2003.

    Article  MathSciNet  Google Scholar 

  28. B. Krasenbrink.Integrierte Jahresplanung von Stromerzeugung und—handel, volume 81 ofAachener Beiträge zur Energieversorgung. Klinkenberg, Aachen, Germany, 2002. PhD Thesis.

    Google Scholar 

  29. W. Ogryczak and A. Ruszczyński. On consistency of stochastic dominance and mean-semideviation models.Mathematical Programming, 89:217–232, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Pennanen. Epi-convergent discretizations of multistage stochastic programs via integration quadratures.Mathematical Programming, 116:461–479, 2008.

    Article  MathSciNet  Google Scholar 

  31. M.V.F. Pereira and L.M.V.G. Pinto. Multi-stage stochastic optimization applied to energy planning.Mathematical Programming, 52:359–375, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Ch. Pflug and W. Römisch.Modeling, Measuring, and Managing Risk. World Scientific, Singapore, 2007.

    Book  MATH  Google Scholar 

  33. R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions.Journal of Banking and Finance, 26:1443–1471, 2002.

    Article  Google Scholar 

  34. R.T. Rockafellar and R.J-B. Wets.Variational Analysis, volume 317 ofGrundlehren der mathematischen Wissenschaften. Springer, Berlin, 1st edition, 1998. (Corr. 2nd printing 2004).

    Google Scholar 

  35. A. Ruszczyński and A. Shapiro, editors,Stochastic Programming, volume 10 ofHandbooks in Operations Research and Management Science. Elsevier, Amsterdam, 1st edition, 2003.

    Google Scholar 

  36. H.K. Schmöller.Modellierung von Unsicherheiten bei der mittelfristigen Strom-erzeugungs—und Handelsplanung, volume 103 ofAachener Beitrge zur Energie-versorgung. Klinkenberg, Aachen, Germany, 2005. PhD Thesis.

    Google Scholar 

  37. S. Sen, L. Yu, and T. Genc. A stochastic programming approach to power portfolio optimization.Operations Research, 54:55–72, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Takriti, B. Krasenbrink, and L.S.-Y. Wu. Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem.Operations Research, 48:268–280, 2000.

    Article  Google Scholar 

  39. J. von Neumann and O. Morgenstern.Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, USA, 1944.

    MATH  Google Scholar 

  40. S.W. Wallace and S.-E. Fleten. Stochastic programming models in energy. In Ruszczyński and Shapiro [35], Chap. 10, vol. 10 of Handbooks in Operations Research and Management Science. North-Holland, The Netherlands, pp. 637– 677, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eichhorn, A., Heitsch, H., Römisch, W. (2009). Scenario Tree Approximation and Risk Aversion Strategies for Stochastic Optimization of Electricity Production and Trading. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M. (eds) Optimization in the Energy Industry. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88965-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88965-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88964-9

  • Online ISBN: 978-3-540-88965-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics