Skip to main content

Applications of TRUST-TECH Methodology in Optimal Power Flow of Power Systems

  • Chapter
Optimization in the Energy Industry

Part of the book series: Energy Systems ((ENERGY))

Summary

The main objective of the optimal power flow (OPF) problem is to determine the optimal steady-state operation of an electric power system while sat- isfying engineering and economic constraints. With the structural deregulation of electric power systems, OPF is becoming a basic tool in the power market. In this paper, a two-stage solution algorithm developed for solving OPF problems has several distinguished features: it numerically detects the existence of feasible solutions and quickly locates them. The theoretical basis of stage I is that the set of stable equilibrium manifolds of the quotient gradient system (QGS) is a set of feasible components of the original OPF problem. The first stage of this algorithm is a fast, globally convergent method for obtaining feasible solutions to the OPF problem. Starting from the feasible initial point obtained by stage I, an interior point method (IPM) at stage II is used to solve the original OPF problem to quickly locate a local optimal solution. This two-stage solution algorithm can quickly obtain a feasible solution and robustly solve OPF problems. Numerical test systems include a 2,383-bus power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Carpentier. Contribution to the economic dispatch problem. Bulletin de la Societ Franhise dElectricit , 8(1):431–437, 1962.

    Google Scholar 

  2. H.W. Dommel and W.F. Tinney. Optimal power flow solutions. IEEE Transactions on Power Apparatus and Systems, PAS-87(10):1866–1876, 1968.

    Article  Google Scholar 

  3. O. Alsac and B. Stott. Optimal load flow with steady-state security. IEEE Transactions on Power Apparatus and Systems, PAS-93(3):745–751, 1974.

    Article  Google Scholar 

  4. S.N. Talukdar and F.F. Wu. Computer-aided dispatch for electric power systems. Proceedings of IEEE, 69(10):1212–1231, 1981.

    Article  Google Scholar 

  5. M. Huneault and F.D. Galiana. A survey of the optimal power flow literature. IEEE Transactions on Power Systems, 6(2):762–770, 1991.

    Article  Google Scholar 

  6. J.A. Momoh, M.E. El-Hawary, and R. Adapa. A review of selected optimal power flow literature to 1993: Part-i and part-ii. IEEE Transactions on Power Systems, 14(1):96–111, 1999.

    Article  Google Scholar 

  7. N. Grudinin. Combined quadratic-separable programming opf algorithm for economic dispatch and security control. IEEE Transactions on Power Systems, 12(4):1682–1688, 1997.

    Article  Google Scholar 

  8. R.C. Burchett, H.H. Happ, and D.R. Vierath. Quadratically convergent optimal power flow. IEEE Transactions on Power Apparatus and Systems, PAS-103(11):3267–3276, 1984.

    Article  Google Scholar 

  9. J. Nanda. New optimal power-dispatch algorithm using fletcher's quadratic programming method. IEE Proceedings C, 136(3):153–161, 1989.

    Google Scholar 

  10. K.C. Almeida and R. Salgado. Optimal power flow solutions under variable load conditions. IEEE Transactions on Power Systems, 15(4):1204–1211, 2000.

    Article  Google Scholar 

  11. S.A. Pudjianto and G. Strbac. Allocation of var support using lp and nlp based optimal power flows. IEE Proceedings — Generation, Transmission and Distribution, 149(4):377–383, 2002.

    Article  Google Scholar 

  12. T.N. Saha and A. Maitra. Optimal power flow using the reduced newton approach in rectangular coordinates. International Journal of Electrical Power and Energy Systems, 20(6):383–389, 1998.

    Article  Google Scholar 

  13. Y.Y. Hong, C.M. Liao, and T.G. Lu. Application of newton optimal power flow to assessment of var control sequences on voltage security: case studies for a ractical power system. IEE Proceedings C, 140(6):539–544, 1993.

    Google Scholar 

  14. J.A. Momoh. Improved interior point method for opf problems. IEEE Transactions on Power Systems, 14(3):1114–1120, 1999.

    Article  Google Scholar 

  15. Y.C. Wu and A.S. Debs. Initialization, decoupling, hot start, and warm start in direct nonlinear interior point algorithm for optimal power flows. IEE Proceedings — Generation, Transmission and Distribution, 148(1):67–75, 2001.

    Article  Google Scholar 

  16. K.C. Almeida, F.D. Galiana, and S. Soares. A general parametric optimal power flow. IEEE Transactions on Power Systems, 9(1):540–547, 1994.

    Article  Google Scholar 

  17. P. Ristanovic. Successive linear programming based opf solution. Technical report, IEEE Tutorial Course Manual #96 TP 111-0, Piscataway, NJ, 1996.

    Google Scholar 

  18. N. Grudinin. Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power Systems, 13(4):1219–1225, 1998.

    Article  Google Scholar 

  19. D. Sun, B. Ashley, B. Brewer, A. Hughes, and W. Tinney. Optimal power flow by newton approach. IEEE Transactions on Power Apparatus and Systems, PAS-103(10):2864–2880, 1984.

    Article  Google Scholar 

  20. Y.C. Wu, A.S. Debs, and R.E. Marsten. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Transactions on Power Systems, 9(2):876–883, 1994.

    Article  Google Scholar 

  21. F.F. Wu, G. Gross, J.F. Luini, and P.M. Lock. A two-stage approach to solving large scale optimal power flow. In IEEE Proceedings of Power Industry Computer Applications Conference (PICA'79), pages 126–136, Cleveland, OH, May 1979.

    Google Scholar 

  22. V.H. Quintana, G.L. Torres, and J. Medina-Palomo. Interior-point methods and their applications to power systems: a classification of publications and software codes. IEEE Transactions on Power Systems, 15(1):170–176, 2000.

    Article  Google Scholar 

  23. G.L. Torres and V.H. Quintana. An interior-point methods for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems, 13(4):1211–1218, 1998.

    Article  Google Scholar 

  24. S. Granville. Optimal reactive dispatch through interior point methods. IEEE Transactions on Power Systems, 9(1):136–146, 1994.

    Article  Google Scholar 

  25. Pjm manual 06, 11, 12: Scheduling operations, 2006. Available at: http://www.pjm.com/contributions/pjm-manuals/manuals.html.

  26. Federal Energy regulatory Commission. Principles for efficient and reliable reactive power supply and consumption. FERC Staff reports, Docket No. AD05-1-000, pages 161–162, February 2005. Available at: http://www/ferc.gov/legal/staff-reports.asp.

  27. H. Wei, H. Sasaki, J. Kubokawa, and R. Yohoyama. An interior point methods for power systems weighted nonlinear l1 norm static state estimation. IEEE ransactions on Power Systems, 13(2):617–623, 1998.

    Article  Google Scholar 

  28. G.D. Irisarri, X. Wang, J. Tong, and S. Mokhtari. Maximum loadability of power systems using interior point method nonlinear optimization. IEEE Transactions on Power Systems, 12(1):162–172, 1997.

    Article  Google Scholar 

  29. S. Granville, J.C.O. Mello, and A.C.G. Melo. Application of interior point methods to power flow unsolvability. IEEE Transactions on Power Systems, 11(2):1096–1103, 1996.

    Article  Google Scholar 

  30. X. Wang, G.C. Ejebe, J. Tong, and J.G. Waight. Preventive/corrective control for voltage stability using direct interior point method. IEEE Transactions on Power Systems, 13(3):878–883, 1998.

    Article  Google Scholar 

  31. J. Medina, V.H. Quintana, A.J. Conejo, and F.P. Thoden. A comparison of interior-point codes for medium-term hydrothermal coordination. IEEE Transactions on Power Systems, 13(3):836–843, 1998.

    Article  Google Scholar 

  32. X. Yan and V.H. Quintana. An efficient predictor — corrector interior point algorithm for security-constrained economic dispatch. IEEE Transactions on Power Systems, 12(2):803–810, 1997.

    Article  Google Scholar 

  33. S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2(4):575–601, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Gondzio. Multiple centrality corrections in a primal-dual method for linear programming. Computational Optimization and Applications, 6(2):137–156, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  35. G.L. Torres and V.H. Quintana. On a nonlinear multiple-centrality corrections interior-point method for optimal power flow. IEEE Transactions on Power Systems, 16(2):222–228, 2001.

    Article  Google Scholar 

  36. Y.C. Wu and A.S. Debs. Initialisation, decoupling, hot start, and warm start in direct nonlinear interior point algorithm for optimal power flows. IEE-Proceeding, 148(1):67–75, 2001.

    Google Scholar 

  37. R.A. Jabr, A.H. Coonick, and B.J. Cory. A primal-dual interior point method for optimal power flow dispatching. IEEE Transactions on Power Systems, 17(3):654–662, 2002.

    Article  Google Scholar 

  38. H. Wei, H. Sasaki, J. Kubakawa, and R. Yokoyama. An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Transactions on Power Systems, 13(3):870–877, 1998.

    Article  Google Scholar 

  39. J. Lee and H.D. Chiang. A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems. IEEE Transactions on Automatic Control, 49(6):888–899, 2004.

    Article  MathSciNet  Google Scholar 

  40. H.D. Chiang and C.C. Chu. A systematic search method for obtaining multiple local optimal solutions of nonlinear programming problems. IEEE Transactions on Circuits and Systems, 43(2):99–109, 1996.

    Article  MathSciNet  Google Scholar 

  41. H.D. Chiang and J. Lee. TRUST-TECH Paradigm for computing high-quality optimal solutions: method and theory, pages 209–234. Wiley-IEEE, New Jersey, February 2006.

    Google Scholar 

  42. C.R. Karrem. TRUST-TECH Based Methods for Optimization and Learning. PhD thesis, Cornell University, Ithaca, NY, 2007.

    Google Scholar 

  43. J.H. Chen. Hybrid TRUST-TECH Algorithms and Their Applications to Mixed Integer and Mini-Max Optimization Problems. PhD thesis, Cornell University, Ithaca, NY, 2007.

    Google Scholar 

  44. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming, Theory and Algorithms. Wiley, Hoboken, NJ, third edition, 2006.

    Book  MATH  Google Scholar 

  45. C.T. Kelley and D.E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM Journal on Numerical Analysis, 35(2):508–523, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  46. T.S. Coffey, C.T. Kelley, and D.E. Keyes. Pseudo-transient continuation and differential-algebraic equations. SIAM Journal of Scientific Computing, 25(2):553–569, 2003.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiang, HD., Wang, B., Jiang, QY. (2009). Applications of TRUST-TECH Methodology in Optimal Power Flow of Power Systems. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M. (eds) Optimization in the Energy Industry. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88965-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88965-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88964-9

  • Online ISBN: 978-3-540-88965-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics