Iterative Detection Method for CDMA-Based Fingerprinting Scheme

  • Minoru Kuribayashi
  • Masakatu Morii
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5284)


Digital fingerprinting of multimedia data involves embedding information in the content signal and offers the traceability of illegal users who distribute unauthorized copies. One potential threat to fingerprinting system is collusion, whereby a group of users combines their individual copies in an attempt to remove the underlying fingerprints. Hayashi et. al have proposed hierarchical fingerprinting scheme using the CDMA technique which designed a fingerprint signal by a combination of quasi-orthogonal sequences to increase the allowable number of users. In this paper, we formalize the model of collusion from the viewpoint of a communication channel, and propose a removal operation considering the interference among fingerprints. We also explore the characteristic of the proposed detector and the effects of the removal operation on a detection sequence. By introducing two kinds of thresholds for the determination of the presence of fingerprints, the performance of the proposed detector is enhanced effectively.


Collusion Attack Noise Element Removal Operation Detection Operation Illegal User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, M., Trappe, W., Wang, Z., Liu, K.J.R.: Collusion resistant fingerprinting for multimedia. IEEE Signal Processing Mag., 15–27 (2004)Google Scholar
  2. 2.
    Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Cox, I., Kilian, J., Leighton, F., Shamson, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(5), 1673–1687 (1997)CrossRefGoogle Scholar
  4. 4.
    Zhao, H., Wu, M., Wang, Z., Liu, K.J.R.: Forensic analysis of nonlinear collusion attacks for multimedia fingerprinting. IEEE Trans. Image Process. 14(5), 646–661 (2005)CrossRefGoogle Scholar
  5. 5.
    Wang, Z.J., Wu, M., Trappe, W., Liu, K.J.R.: Group-oriented fingerprinting for multimedia forensics. EURASIP J. Appl. Signal Process. (14), 2142–2162 (2004)Google Scholar
  6. 6.
    Wang, Z.J., Wu, M., Zhao, H., Trappe, W., Liu, K.J.R.: Anti-collusion forensics of multimedia fingerprinting using orthogonal modulatio. IEEE Trans. Image Process. 14(6), 804–821 (2005)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inform. Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Trappe, W., Wu, M., Wang, Z.J., Liu, K.J.R.: Anti-collusion fingerprinting for multimedia. IEEE Trans. Signal Process. 51(4), 1069–1087 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhu, Y., Feng, D., Zou, W.: Collusion secure convolutional spread spectrum fingerprinting. In: Barni, M., Cox, I., Kalker, T., Kim, H.-J. (eds.) IWDW 2005. LNCS, vol. 3710, pp. 67–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proc. 35th ACM Symp. Theory of Comp., pp. 116–125 (2003)Google Scholar
  11. 11.
    Hayashi, N., Kuribayashi, M., Morii, M.: Collusion-resistant fingerprinting scheme based on the CDMA-technique. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 28–43. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Infom. Theory 14(1), 154–156 (1968)CrossRefzbMATHGoogle Scholar
  13. 13.
    Stone, H.: Analysis of attacks on image watermarks with randomized coefficients. NEC Res. Inst., Tech. Rep. 96–045 (1996)Google Scholar
  14. 14.
    Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, Boston (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. on Image Process. 10(5), 783–791 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Minoru Kuribayashi
    • 1
  • Masakatu Morii
    • 1
  1. 1.Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations