Advertisement

Strengthening QIM-Based Watermarking by Non-uniform Discrete Cosine Transform

  • Xianfeng Zhao
  • Bingbing Xia
  • Yi Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5284)

Abstract

Being extremely precise and at a low loss of perceptual quality, the attacks of value modification and optimized noise reduction still threaten the watermarking based on quantization index modulation (QIM). To resist them, the paper constructs a non-uniform discrete cosine transform (NDCT), and brings out an NDCT-QIM watermarking scheme, which embeds a watermark in a private NDCT domain with the parameters of NDCT as a secret key. The technique blinds the value modification by dispersing the attacking signal and changing its energy in the embedded domain. Because of the variable power spectrum of a watermark, the noise reduction becomes non-optimal. Some other advantages, including the ease of embedding, computational simplicity, etc., can also be acquired or maintained by the use of NDCT.

Keywords

Discrete Cosine Transform Watermark Scheme Power Spectrum Density Watermark Extraction Audio Watermark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, B., Wornell, G.W.: An information-theoretic approach to the design of robust digital watermarking systems. In: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP 1999), Phoenix, AZ, March 15-19, pp. 2061–2064 (1999)Google Scholar
  2. 2.
    Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Information Theory 47(4), 1423–1443 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eggers, J.J., Bauml, R., Tzschoppe, R., Girod, B.: Scalar Costa scheme for information embedding. IEEE Trans. Signal Processing 51(4), 1003–1019 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Pérez-González, F., Balado, F., Hernández, J.R.: Performance analysis of existing and new methods for data hiding with know-host information in additive channels. IEEE Trans. Signal Processing 51(4), 960–980 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Vila-Forcen, J.E., Voloshynovskiy, S., Koval, O., Pun, T., Perez-González, F.: Worst case additive attack against quantization-based watermarking techniques. In: Proc. IEEE 6th Workshop on Multimedia Signal Processing, September 29 - October 1, pp. 135–138 (2004)Google Scholar
  6. 6.
    Moulin, P., Goteti, A.K.: Block QIM watermarking games. IEEE Trans. on Information Forensics and Security 1(3), 293–310 (2006)CrossRefGoogle Scholar
  7. 7.
    Eggers, J.J., Su, J.K., Girod, B.: Asymmetric watermarking schemes. In: Schumacher, M., Steinmetz, R. (eds.) Proc. Tagungsband des GI Workshop Sicherheit in Mediendaten, Berlin, Germany, September 19-22, pp. 107–123 (2000)Google Scholar
  8. 8.
    Bas, P., Hurri, J.: Security of DM quatization watermarking schemes: a practical study for digital images. In: Barni, M., Cox, I., Kalker, T., Kim, H.-J. (eds.) IWDW 2005. LNCS, vol. 3710, pp. 186–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Lee, K., Kim, D.S., Kim, T., Moon, K.A.: EM estimation of scale factor for quantization-based audio watermarking. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 316–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kim, S., Bae, K.: Robust estimation of amplitude modification for scalar Costa scheme based audio watermark detection. In: Cox, I., Kalker, T., Lee, H.-K. (eds.) IWDW 2004. LNCS, vol. 3304, pp. 101–114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Pérez-Freire, L., Pérez-González, F., Furon, T., Comesña, P.: Security of lattice-based data hiding against the know message attack. IEEE Trans. on Information Forensics and Security 1(4), 421–439 (2006)CrossRefGoogle Scholar
  12. 12.
    Pérez-Freire, L., Pérez-González, F.: Exploiting security holes in lattice data hiding. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 159–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Su, J.K., Girod, B.: Power-spectrum condition for energy-efficient watermarking. In: Proc. ICIP 1999, Kobe, Japan, October 24-28, vol. 1, pp. 301–305 (1999)Google Scholar
  14. 14.
    Su, J.K., Eggers, J.J., Girod, B.: Analysis of digital watermarks subjected to optimum linear filtering and additive noise. Signal Processing 81, 1141–1175 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fridrich, J., Baldoza, A.C., Simard, R.J.: Robust digital watermarking based on key-dependent basis functions. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 143–157. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Dietl, W., Meerwald, P., Uhl, A.: Protection of wavelet-based watermarking systems using filter parametrization. Signal Processing 83, 2095–2116 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Xie, L., Zhang, J., He, H.: Robust audio watermarking scheme based on nonuniform discrete Fourier transform. In: Proc. 2006 IEEE International Conference on Engineering of Intelligent Systems, April 22-23, pp. 1–5 (2006)Google Scholar
  18. 18.
    Schneid, J., Pittner, S.: On the parametrization of the coefficients of dolation equations for compactly supported wavelets. Computing 51, 165–173 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moulin, P., Koetter, R.: Data-hiding codes. Proc. of the IEEE 93(12), 2083–2126 (2005)CrossRefGoogle Scholar
  20. 20.
    Hammersley, J., Handscomb, D.: Monto Carlo Methods. Methuen, London (1964)CrossRefzbMATHGoogle Scholar
  21. 21.
    Craver, S., Memon, N., Yeo, B.L., Yeung, M.M.: Resolving rightful ownerships with invisible watermarking techniques: limitations, attacks, and implications. IEEE Journal on Selected areas in communications 16(4), 573–586 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xianfeng Zhao
    • 1
  • Bingbing Xia
    • 1
  • Yi Deng
    • 1
  1. 1.State Key Laboratory of Information SecurityInstitute of Software, Chinese Academy of SciencesBeijingChina

Personalised recommendations