Advertisement

Stability of Periodic Solution to Fuzzy BAM Neural Networks with Time-Varying Delays

  • Qian-hong Zhang
  • Li-hui Yang
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 54)

Abstract

In this paper, employing Lyapunov functional and elementary inequality \((2ab\leq ra^2+\frac{1}{r}b^2,\ r>0)\), some sufficient conditions are derived for the existence and uniqueness of periodic solution of fuzzy bi-directional associative memory (BAM) networks with time-varying delays, we obtain some new and simple criteria to ensure global exponential stability of periodic solution. These criteria are important in the design and applications of fuzzy BAM neural networks.

Keywords

Fuzzy BAM neural networks Periodic solution Global exponential stability Time-varying delays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kosto, B.: Adaptive bi-directional associative memories. Appl. Opt. 26, 4947–4960 (1987)CrossRefGoogle Scholar
  2. 2.
    Kosto, B.: Bi-directional associative memories. IEEE Trans. Systems Man Cybernet 18, 49–60 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Gopalsmy, K., He, X.Z.: Delay-independent stability in bi-directional associative memory networks. IEEE Trans. Neural Networks 5, 998–1002 (1994)CrossRefGoogle Scholar
  4. 4.
    Cao, J., Daniel, W., Ho, C., Huang, X.: LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay. Nonlinear Analysis 66, 1558–1572 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cao, J., Wang, L.: Exponential stability and periodic oscilatory solution in BAM networks with delays. IEEE Trans. Neural Networks 13, 457–463 (2002)CrossRefGoogle Scholar
  6. 6.
    Zhao, H.: Global exponential stability of bidirectional associative memory neural networks with distributed delays. Phys. Lett. A 297, 182–190 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lou, X., Cui, B.: On the global robust stability of BAM neural networks with time-varying delays. Neurocomputing 70, 273–279 (2006)CrossRefGoogle Scholar
  8. 8.
    Park, J.H.: A novel criterion for global asymptotic stability of BAM neural networks with time delays. Chaos Solitons Fractals 29, 446–453 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, A., Cao, J., Huang, L.H.: Exponential stability of BAM neural networks with transmission delays. Neurocomputing 57, 435–454 (2004)CrossRefGoogle Scholar
  10. 10.
    Cao, J.: Global asymptotic stability of delayed bidirectional memory neural networks. Appl. Math. and Comput. 142, 333–339 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Arik, S.: Global asymptotic stability of hybird bidirectional associative memory neural networks with time delays. Phys. Lett. A 351, 85–91 (2006)CrossRefGoogle Scholar
  12. 12.
    Arik, S., Tavasanoglu, V.: Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays. Neurocomputing 68, 161–176 (2005)CrossRefGoogle Scholar
  13. 13.
    Song, Q., Zhao, Z., Li, Y.: Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms. Phys. Lett. A 335, 213–225 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Liang, J., Cao, J., Daniel, W., Ho, C.: Discrect-time bidirectional associative memory neural networks with variable delays. Phys. Lett. A 335, 226–234 (2005)zbMATHCrossRefGoogle Scholar
  15. 15.
    Huang, X., Cao, J., Huang, D.: LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks. Chaos Solitons Fractals 24, 885–898 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Liu, Y., Tang, W.: Existence and exponential stability of periodic solution for BAM neural networks with coeffients and delays. Neurocomputing 69, 2152–2160 (2006)CrossRefGoogle Scholar
  17. 17.
    Cao, J., Jiang, Q.: An analysis of periodic solutions of bi-directional associative memory neural networks with time-varying delays. Phys. Lett. A 330, 203–213 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chen, A., Huang, L., Cao, J.: Existence and stability of almost periodic solution for BAM neural networks with delays. Appl. Math. Comput. 137, 177–193 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chen, A., Huang, L., Liu, Z., Cao, J.: Periodic bidirectional associative memory neural networks with distributed delays. Journal of Math. Analys. and Appl. 317, 80–102 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhou, T., Chen, A., Zhou, Y.: Existence and global exponential stability of periodic solution to BAM neural networks with periodic coeffients and distibuted delays. Phys. Lett. A 343, 336–350 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Liu, Z., Chen, A., Huang, L.: Existence and global exponential stability of periodic solution to self-connection BAM neural networks with delay. Phys. Lett. A 328, 127–143 (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Guo, S.J., Huang, L.H., Dai, B.X., Zhang, Z.Z.: Global existence of periodic solutions of BAM neural networks with coeffients. Phys. Lett. A 317, 97–106 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Song, Q., Cao, J.: Global exponential stability and existence of periodic solutions in BAM neural networks with delays and reaction-diffusion terms. Chaos Solitons Fractals 23, 421–430 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yang, T., Yang, L.: The global stability of fuzzy cellular neural networks. IEEE Transactions on Circuits and SystemsI 43, 880–883 (1996)CrossRefGoogle Scholar
  25. 25.
    Yang, T., Yang, L., Wu, C., Chua, L.: Fuzzy cellular neural networks: theory. In: Proc. IEEE Int Workshop Cellular Neural Networks Appl., pp. 181–186 (1996)Google Scholar
  26. 26.
    Yang, T., Yang, L., Wu, C., Chua, L.: In: Pro. of IEEE International Workshop on Cellular Neural Neworks and Applications, p. 225 (1996)Google Scholar
  27. 27.
    Huang, T.: Exponential stability of fuzzy cellular neural networks with distributed delay. Phys. Lett. A 351, 48–52 (2006)CrossRefGoogle Scholar
  28. 28.
    Huang, T.: Exponential stability of delayed fuzzy cellular neural networks with diffusion. Chaos Solitons Fractals 31, 658–664 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Yuan, K., Cao, J., Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing 69, 1619–1627 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qian-hong Zhang
    • 1
    • 2
  • Li-hui Yang
    • 3
  1. 1.Basic Science Dept.Hunan Inst. of TechnologyHengyangChina
  2. 2.School of Math. Science and Computing TechnologyCentral South UniversityChangshaP.R. China
  3. 3.Dept. of Math.Hunan City UniversityYiyangP.R. China

Personalised recommendations