A Possibilistic Mean Absolute Deviation Portfolio Selection Model

  • Guo-hua Chen
  • Xiao-lian Liao
Part of the Advances in Soft Computing book series (AINSC, volume 54)


This paper deals with a mean absolute deviation portfolio selection problem with fuzzy return rates under fuzzy liquidity constraint, a new possibilistic programming approach based on possibilistic mean and fuzzy liquidity has been proposed, the problem can be reduced to a linear programming by possibility theory. A numerical example of portfolio selection problem is given to illustrate our proposed approach.


Portfolio selection absolute deviation possibilistic mean possibility theory fuzzy liquidity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnott, R.D., Wanger, W.H.: The measurement and control of trading costs. Financial Analysts Journal 46(6), 73–80 (1990)CrossRefGoogle Scholar
  2. 2.
    Bellman, R., Zadeh, L.A.: Decision making in a fuzzy environment. Management Science 17, 141–164 (1970)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Carlsson, C., Fuller, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy sets and systems 122, 315–326 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carlsson, C., Fuller, R., Majlender, P.: A possibilistic approach to selecting portfolios with highest utilty score. Fuzzy sets and systems 131, 13–21 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Possibility theory. Plenum press, New York (1998)Google Scholar
  6. 6.
    Inuiguchi: Stochastic programming problems versus fuzzy mathematical programming probblems. Jpn. J. Fuzzy Theory Systems 4, 97–109 (1992)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Konno, H., Yamazaki, H.: Mean absolute deviation portfolio optimization model and its application to Tokyo stock market. Manage. Sci. 37, 519–531 (1991)CrossRefGoogle Scholar
  8. 8.
    Konno, H., Wijayanayake, A.: Mean absolute deviation Portfolio optimization model under transaction costs. Journal of the operation researchp society of japan 42(4), 367–374 (1999)MathSciNetGoogle Scholar
  9. 9.
    Konno, H., Wijayanayake, A.: Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math. Program. Ser. B 89, 233–250 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Leon, T., Liern, V., Vercher, E.: Viability of infeasible portfolio selection problem: a fuzzy approach. European Journal of Operational Research 139, 178–189 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Luhandjula, M.K., Gupta, M.M.: On fuzzy stochastic optimization. Fuzzy Sets and Systems 81, 47–55 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Markowitz, H.: Portfolio Selection. Journal of Finance 7, 77–91 (1952)CrossRefGoogle Scholar
  13. 13.
    Ogryczak, W., Ruszczynski, A.: From stochastic dominance to mean-risk model. Eur. J. Oper. Res. 116, 33–50 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ostermask, R.: A fuzzy control model (FCM) for dynamic portfolio management. Fuzzy sets and Systems 78, 243–254 (1998)CrossRefGoogle Scholar
  15. 15.
    Ramaswamy, S.: Portfolio selection using fuzzy decision theory, working paper of bank for international settlements (59) (1998)Google Scholar
  16. 16.
    Tanaka, H., Guo, P., Trksen, I.B.: Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets and Systems 111, 387–397 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Watada, J.: Fuzzy portfolio model for decision making in investment. In: Yoshida, Y. (ed.) Dynamical Aspects in fuzzy decision making, pp. 141–162. Physica Verlag, Heidelberg (2001)Google Scholar
  18. 18.
    Yoshimoto, A.: The mean-variance approach to portfolio optimization subject to transaction costs. Journal of the Operational Research Society of Japan 39, 99–117 (1996)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 1, 3–28 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lacagnina, V., Pecorella, A.: A stochastic soft constraints fuzzy model for a portfolio selection problem. Fuzzy Sets and Systems 157, 1317–1327 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhang, W.: Possibilistic mean-standard deviation models to portfolio selection for bounded assets. Applied mathematics and computation 189, 1614–1623 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Huang, X.: Risk curve and fuzzy portfolio selection. Applied mathematics and computation 55, 1102–1112 (2008)zbMATHCrossRefGoogle Scholar
  23. 23.
    Enriqueta, V., Jos, B., Josicente, S.: Fuzzy portfolio optimization under downside risk measures. Fuzzy sets and systems 158, 769–782 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Liu, S., Wang, R.-T.: A numerical solution method to interval quadratic programming. Applied mathematics and computation (2007), doi:10.1016/j.amc.2006.12.007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guo-hua Chen
    • 1
  • Xiao-lian Liao
    • 1
  1. 1.Department of mathematicsHunan Institute of Humanities Science and Technology LoudiP.R. China

Personalised recommendations