Advertisement

The Direction Entropies for Intuitionistic Fuzzy Sets

  • Qin-peng Cai
  • Juan Li
  • Cheng-yi Zhang
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 54)

Abstract

Fuzzy positive entropy, fuzzy negative entropy and fuzzy entropy for intuitionistic fuzzy sets in [12] are studied. We discover that there is a contradiction between the definitions and the entropy theory defined by Szmidt in [8]. After that, new concepts of fuzzy positive entropy , fuzzy negative entropy and fuzzy entropy for intuitionistic fuzzy sets are proposed by Shannons function. Finally, their properties are discussed. The results show that the properties of our entropy is more weak than Szmidts, but it is useful to distinguish two different intuitionistic fuzzy sets.

Keywords

Intuitionistic fuzzy sets Fuzzy positive entropy Fuzzy negative entropy Fuzzy direction entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.: Fuzzy Sets and Systems. In: Proc. Symp. on Systems Theory, Polytechnic Institute of Brooklyn, New York, pp. 29–30 (1965)Google Scholar
  2. 2.
    De Luca, A., Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inform. and Control 20, 301–312 (1972)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Fundamental Theoretical Elements, vol. 1. Academic Press, New York (1975)zbMATHGoogle Scholar
  4. 4.
    Yager, R.: On the measure of fuzziness and negation. Part I: Membership in the unit interval. Internat. J. General Systems 5, 189–200 (1979)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kosko, B.: Fuzzy entropy and conditioning. Inform. Science 40, 165–174 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kosko, B.: Fuzziness vs probability. Internat. J. General Systems 17, 211–240 (1990)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kosko, B.: Fuzzy Engineering. Prentice-Hall, Englewood Cliffs (1997)zbMATHGoogle Scholar
  8. 8.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118, 467–477 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Atanassov, K.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61, 137–142 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Atanassov, K.: Intuitionistic Fuzzy Sets. In: Theory and Applications. Physica-Verlag, Heidelberg /New York (1999)Google Scholar
  12. 12.
    Chengyi, Z.: Note on Fuzzy Entropy of Vague Sets and its construction method. Computer Application and Software 21, 27–29 (2004) (in chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qin-peng Cai
    • 1
  • Juan Li
    • 1
  • Cheng-yi Zhang
    • 1
  1. 1.Department of MathematicsHainan Normal UniversityHaikouP.R. China

Personalised recommendations