Entropy for Interval-Valued Fuzzy Sets

  • Hong-mei Ju
Part of the Advances in Soft Computing book series (AINSC, volume 54)


A non-probabilistic-type entropy measure for interval-valued fuzzy set (IVFS) is proposed. It is a result of a geometric interpretation of IVFS and uses a ratio of distances between them. It is also shown that the proposed measure can be defined in terms of the ratio of interval-valued fuzzy cardinalities: of F ∩ F c and F ∪ F c .


Distance between IVFSs Cardinality between IVFSs Entropy between IVFSs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy Sets and Systems. In: Proc. Systems Theory, Polytechnic Institute of Brooklyn, New York, pp. 29–37 (1965)Google Scholar
  3. 3.
    De Luca, A., Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inform. And Control 20, 301–312 (1972)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Fundamental Theoretical Elements, vol. 1. Academic Press, New York (1975)zbMATHGoogle Scholar
  5. 5.
    Yager, R.R.: On the measure of fuzziness and negation. Part I: Membership in the unit interval. Internat. J. General Systems 5, 189–200 (1979)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kosko, B.: Fuzzy entropy and conditioning. Inform. Sci. 40(2), 165–174 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kosko, B.: Fuzziness vs. probability. Internat. J. General Systems 17(2-3), 211–240 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kacprzyk, J.: Multistage Fuzzy Control. Wiley, New York (1997)zbMATHGoogle Scholar
  9. 9.
    Dubios, D., Ostasiewicz, W., Prade, H.: Fuzzy sets: history and basic notions[M]. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, pp. 80–93. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  10. 10.
    Iczany, G.: A method of inference in approximate reasoning based on interval valued fuzzy set[J]. Fuzzy Sets and Systems 21(1), 1–17 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hong-mei Ju
    • 1
  1. 1.School of InformationBeijing Wuzi UniversityBeijingP.R. China

Personalised recommendations