ρ-Connectivity in L-Fuzzy Topological Spaces

  • Chang-qi Xiong
  • Shi-zhong Bai
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 54)


It is known that connectedness is one of the important notions in topology. In this paper, a new notion of connectedness is introduced in L-topological spaces, which is called ρ-connectedness. It contains some nice properties. Especially, the famous K. Fan’s Theorem holds for ρ-connectedness in L-topological spaces.


L-topological ρ-connectedness ρ-separated 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, S.Z.: Strong connectedness in L-fuzzy topological spaces. J.Fuzzy Math. 3, 751–759 (1995)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bai, S.Z.: I Type of strong connectivity in L-fuzzy topological spaces. Fuzzy Sets and Systems 99, 357–362 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Luo, H., Bai, S.Z.: A new connectivity in L-fuzzy topological spaces (to submit)Google Scholar
  4. 4.
    Wang, G.J.: Connectivity in L-fuzzy topological spaces. J. Shanxi Normal University 3, 1–10 (1987)zbMATHGoogle Scholar
  5. 5.
    Azad, K.K.: On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82, 14–32 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hutton, B.: Uniformities on fuzzy topological spaces. J. Math. Anal. Appl. 58, 559 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Thakur, S.S., Singh, S.: On fuzzy semi-preopen sets and fuzzy semi-precontinuity. Fuzzy Sets and Systems 3, 383–391 (1998)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Wang, G.J.: Theory of L-fuzzy Topological Spaces. Press of Shanxi Normal University, Xi’an (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chang-qi Xiong
    • 1
  • Shi-zhong Bai
    • 1
  1. 1.Department of Mathematics and PhysicsWuyi UniversityGuangdongP.R. China

Personalised recommendations