Advertisement

Autonomous Mobile Intelligent Robots on Fuzzy System with Optimal Theories

  • Hong-yong Yang
  • Fu-zeng Zhang
Part of the Advances in Soft Computing book series (AINSC, volume 54)

Abstract

A dynamical model for autonomous mobile intelligent robots is presented. Based on the local information of the swarm, a fuzzy logical controller (FLC) of the attraction/ repulsion function is built. Combining with the rate consensus algorithm, the swarming of the separation, cohesion and alignment is achieved. Based on the optimal controller theories, a performance target is used to measure the states of the system. By applying the connected network from the individual local perceived information, the aggregation of the multi-agent systems can swarm following a whole consensus in the computer simulation.

Keywords

Autonomous Mobile Robots Alignment Fuzzy System Dynamical Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 4, 25–34 (1987)CrossRefGoogle Scholar
  2. 2.
    Vicsek, T., Czirok, A., Ben-Jacob, E., et al.: Novel type of phase transition in a system of self-driven particles. Phasical Review Letters 6, 1226–1229 (1995)CrossRefGoogle Scholar
  3. 3.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans. on Automatic Control 6, 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. on Automatic Control 2, 169–182 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. on Automatic Control 5, 655–661 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. on Automatic Control 9, 1520–1533 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. on Automatic Control 3, 401–420 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formation. IEEE Trans. on Automatic Control 9, 1465–1476 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lin, Z., Brouke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 4, 622–629 (2004)CrossRefGoogle Scholar
  10. 10.
    Bauso d., Giarre, L., Pesenti, R.: Nonlinear protocols for optimal distributed consensus in networks of dynamic agents. Systems and Control Letters 11, 918–928 (2006)MathSciNetGoogle Scholar
  11. 11.
    Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part i: Fixed topology. In: Proc. IEEE Conf. Decision Control, Maui, Hawaii, pp. 2010–2015 (2003)Google Scholar
  12. 12.
    Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part ii: Dynamic topology. In: Proc. IEEE Conf. Decision Control, Maui, Hawaii, pp. 2016–2021 (2003)Google Scholar
  13. 13.
    Veerman, J.J.P., Lafferriere, G., Caughman, J.S., Williams, A.: Flocks and formations. J. Stat. Physics 121, 901–936 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Systems and Control Letters 1, 65–78 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: Proc. Int. Conf. Information Processing in Sensor Networks, Los Angeles, CA, April 2005, pp. 63–70 (2005)Google Scholar
  16. 16.
    Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: Proc. IEEE Conf. Decision Control, European Control Conf., Seville, Spain, December 2005, pp. 6698–6703 (2005)Google Scholar
  17. 17.
    Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans. on Automatic Control 11, 1867–1872 (2005)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of state-dependent graph Laplacian. IEEE Trans. Autom. Control 1, 116–120 (2006)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ren, W., Beard, R.W., Atkins, E.M.: Information Consensus in Multivehicle Cooperative Control: Collective Group Behavior through Local Interaction. IEEE Control Systems Magazine 2, 71–82 (2007)CrossRefGoogle Scholar
  20. 20.
    Lawton, J.R., Beard, R.W., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Automat. 6, 933–941 (2003)CrossRefGoogle Scholar
  21. 21.
    Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Automat. Contr. 1, 121–127 (2005)MathSciNetGoogle Scholar
  22. 22.
    Caughman, J.S., Lafferriere, G., Veerman, J.J.P., et al.: Decentralized control of vehicle formations. Syst. Control Lett. 9, 899–910 (2005)MathSciNetGoogle Scholar
  23. 23.
    Ren, W.: Distributed Attitude Alignment in Spacecraft Formation Flying. International Journal of Adaptive Control and Signal Processing 2(3), 95–113 (2007)CrossRefGoogle Scholar
  24. 24.
    Lawton, J.R., Beard, R.W.: Synchronized multiple spacecraft rotations. Automatica 8, 1359–1364 (2002)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Mesbahi, M.: On state-dependent dynamic graphs and their controllability properties. IEEE Trans. Autom. Control 3, 387–392 (2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Hristu, D., Morgansen, K.: Limited communication control. Syst. Control Lett. 37, 193–205 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., et al.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 2, 229–243 (2006)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked Multi-agent systems. Proceedings of the IEEE 1, 215–233 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hong-yong Yang
    • 1
  • Fu-zeng Zhang
    • 1
  1. 1.School of Computer Science and TechnologyLudong UniversityYantaiChina

Personalised recommendations