Advertisement

Solving General Fuzzy Linear Systems

  • Xu-dong Sun
  • Si-zong Guo
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 54)

Abstract

This paper investigates general fuzzy linear systems of the form Ax = y and general dual fuzzy linear systems of the form Ax + y = Bx + z with A, B matrices of crisp coefficients and y, z fuzzy number vectors. The aim of this paper is twofold. First, by the unique least Euclidean norm solution we solve the systems with no full rank matrices A, B. Second, We give the new necessary and sufficient conditions for a strong fuzzy solution existence. Moreover, some numerical examples are designed.

Keywords

General fuzzy linear systems general dual fuzzy linear systems least Euclidean norm solution monotone function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedman, M., Ming, M., Kandel, A.: Fuzzy linear systems. Fuzzy Sets and Systems 96, 201–209 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ma, M., Friedman, M., Kandel, A.: Duality in fuzzy linear systems. Fuzzy Sets and Systems 109, 55–58 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asady, B., Abbasbandy, S., Alavi, M.: Solution of a fuzzy system of linear equation. Applied Mathematics and Computation 175, 519–531 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Asady, B., Abbasbandy, S., Alavi, M.: Fuzzy general linear systems. Applied Mathematics and Computation 169, 34–40 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zheng, B., Wang, K.: General fuzzy linear systems. Applied Mathematics and Computation 181, 1276–1286 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Abbasbandy, S., Otadi, M., Mosleh, M.: Minimal solution of general dual fuzzy linear systems. Chaos, Solitons and Fractals 37, 1113–1124 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goetschel, R., Voxman, W.: Elementary calculus. Fuzzy Sets and Systems 18, 31–43 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, G.: Matrix methods and applications. Science Press, Bingjing (2007)Google Scholar
  9. 9.
    You, T.: Numerical Algebra. Tianjin University Press, Tianjin (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xu-dong Sun
    • 1
  • Si-zong Guo
    • 1
  1. 1.Institute of Mathematics and Systems ScienceLiaoning Technical UniversityLiaoningP.R. China

Personalised recommendations