Advertisement

A Multi-criteria Decision Making Method on Intuitionistic Fuzzy Sets

  • Rong Lan
  • Jiu-lun Fan
Part of the Advances in Soft Computing book series (AINSC, volume 54)

Abstract

This paper discusses a multi-criteria decision making model on intuitionistic fuzzy sets. Based on the similarity measure between intuitionistic fuzzy sets, a novel method is shown for the multi-criteria decision making model, the starting point of the proposed method is a geometrical interpretation of intuitionistic fuzzy set. An alternative is mapped to an intuitionistic fuzzy value by using the degree of similarity, and then a score function is used to measure the degree of suitability that an alternative satisfies the decision maker’s requirement. Examples are given to show the proposed method’s effectiveness.

Keywords

Intuitionistic fuzzy set Intuitionistic fuzzy value Similarity measure Ideal point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–356 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Fuzzy Sets and Systems 20, 87–96 (1975)Google Scholar
  4. 4.
    Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans SMC 23, 610–614 (1993)zbMATHGoogle Scholar
  5. 5.
    Burillo, P., Bustine, H.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79, 403–405 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133, 227–235 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burillo, P., Bustince, H.: Construction theorems for intuitionistic fuzzy sets. Fuzzy Sets and Systems 84, 271–281 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems 78, 305–316 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Szmidt, E., Kacprzyk, J.: Distance between intuitionistic fuzzy sets and their applications in reasoning. Studies in Computational Intelligence 2, 101–116 (2005)Google Scholar
  11. 11.
    Szmidt, E., Kacprzyk, J.: A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 388–393. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Montero, J., Gómez, D., Bustince, H.: Atanassov’s intuitionistic fuzzy sets as a classification model. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 69–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 67, 163–172 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hong, D.H., Choi, C.H.: Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 114, 103–113 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Szmidt, E., Kacprzyk, J.: An application of intuitionistic fuzzy set similarity measures to a multi-criteria decision making problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 314–323. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Atanassov, K.T.: Intuitionistic fuzzy sets: theory and application. physica-verlag, Heidelberg (2000)Google Scholar
  17. 17.
    Chen, S.M.: Similarity measures between vague sets and between elements. IEEE Trans. SMC 27, 153–158 (1997)Google Scholar
  18. 18.
    Fan, J.L.: Similarity measure on vague values and vague sets. Systems Engineering: Theory and Practice 26, 95–100 (2006) (In chinese)Google Scholar
  19. 19.
    Wang, J., Zhang, J., Liu, S.Y.: A new score function for fuzzy MCDM based on vague set theory. International Journal of Computational Cognition 4, 44–48 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rong Lan
    • 1
    • 2
  • Jiu-lun Fan
    • 1
  1. 1.Department of Information and ControlXi’an Institute of Post and TelecommunicationsXi’anP.R. China
  2. 2.School of Electronic EngineeringXidian UniversityXi’anP.R. China

Personalised recommendations