ωθ− Convergence Theory of Nets in − Spaces

Part of the Advances in Soft Computing book series (AINSC, volume 54)


In this paper, the ωθ− convergence theory of fuzzy nets in − spaces is introduced. Some properties of the ωθ−convergence theory are discussed. It can be used to characterize the weakly (ω 1,ω 2) continuous functions in − spaces.


− space ωθ-convergence ωθ−limit point ωθ-cluster point weakly ( ω1 and ω2) continuous function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, C.L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182–190 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, S.L.: U-convergence theory and L-fuzzy U − sets. Information Sciences 87, 205–213 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, S.L.: Theory of L −fuzzy H −sets. Fuzzy Sets and Systems 51, 89–92 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, S.L., Chen, S.T.: A new extension of fuzzy convergence. Fuzzy Sets and Systems 109, 199–204 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, S.L., Wu, J.R.: SR − convergence theory in L −fuzzy lattices. Information Sciences 125, 233–247 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, S.L., Cheng, J.S.: On Lω−spaces. In: Proc. 11th IFSA World Congress, vol. I, pp. 257–261. Tsinghua University Press (2005)Google Scholar
  7. 7.
    Chen, S.L.: Some separation axiom in −spaces. In: Proc. of 2006 Asian Fuzzy System Society International Conference, pp. 211–216. Hebei University Press, Baoding (2006)Google Scholar
  8. 8.
    Chen, S.L.: A new Hausdorff’s separation in −spaces. Journal of Yangtze University 1, 8–14 (2005)Google Scholar
  9. 9.
    Chen, S.L., Wang, X.G.: Sθ− convergence theory in L − fuzzy topology. J. Fuzzy Math. 8, 501–516 (2000)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Cheng, J.S.: Some properties of δ− continuous order-homomorphisms. Fuzzy Systems and Math. 11(4), 38–41 (1997)Google Scholar
  11. 11.
    Huang, Z.X.: The ωθ−connected properties on − space. Fuzzy Systems and Math. 22(1), 91–95 (2008)Google Scholar
  12. 12.
    Liu, Y.M., Luo, M.K.: Fuzzy Topology. World Scientific Publishing Co.Pte.Ltd., Singapore (1997)zbMATHGoogle Scholar
  13. 13.
    Pu, P.M., Liu, Y.M.: Fuzzy topology I, neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 76, 571–599 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Saha, S.: Fuzzy δ−continuoua mappings. J. Math. Anal. Appl. 126, 130–142 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, G.J.: L-fuzzy topology spaces. Xi’an:Shaan Xi Normal University Press (1988)Google Scholar
  16. 16.
    Wang, G.J.: Topological molecular lattices(I). Kexue Tongbao 28, 1089–1091 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bo Chen
    • 1
  1. 1.School of Mathematics and StatisticsSouthwest UniversityChongqingP.R. China

Personalised recommendations