Normal MP-Filters of R0-Algebras

  • Yong-lin Liu
  • Mei-ying Ren
Part of the Advances in Soft Computing book series (AINSC, volume 54)


The aim of this paper is to introduce the notion of normal MP-filters and investigate the structure of R 0-algebras. The relations between normal MP-filters and MP-filters, and between normal MP-filters and filters are discussed. The extension property of normal MP-filters is established. The characteristic properties of normal MP-filters are obtained. Finally, normal R 0-algebras are completely characterized via the normal MP-filters.


R0-algebra (NM-algebra) normal R0-algebra normal MP-filter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbes, R., Dwinger, P.: Distributive Lattices. Univ. of Missouri Press, Columbia (1974)zbMATHGoogle Scholar
  2. 2.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  3. 3.
    Esteva, F., Godo, J.: Monoidal t-norm-based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Flondor, P., Georgescu, G., Iorgulescu, A.: Pseudo-t-norms and pseudo-BL algebras. Soft Computing 5(5), 355–371 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras: A noncommutative extension of BL algebras. In: Abstracts of The Fifth International Conference FSTA 2000, Slovakia (2000)Google Scholar
  6. 6.
    Hajek, P.: Fleas and fuzzy logic. J. of Mult.-Valued Logic & Soft Computing 11(1-2), 137–152 (2005)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Iorgulescu, A.: Some direct ascendents of Wajsberg and MV algebras. Scientiae Mathematicae Japonicae 57, 583–647 (2003)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Liu, Y.L., Liu, S.Y.: Normal R 0-algebras. Advances in Systems Science and Applications 4, 665–669 (2004)Google Scholar
  9. 9.
    Liu, Y.L., Meng, J.: Fuzzy ideals in BCI-algebras. Fuzzy Sets and Systems 123, 227–237 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Liu, Y.L., Xu, Y., Meng, J.: BCI-implicative ideals of BCI-algebras. Information Sciences 177, 4987–4996 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liu, Y.L., Xu, Y., Qin, K.Y., Liu, S.Y.: ILI-ideals and prime LI-ideals in lattice implication algebras. Information Sciences 155, 157–175 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Liu, Y.L., Liu, S.Y., Xu, Y.: Pseudo-BCK algebras and PD-posets. Soft Computing 11(1), 91–101 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, Y.L., Liu, S.Y., Xu, Y.: An answer to the Jun-Shim-Lele’s open problem on the fuzzy filters. J. Appl. Math. Computing 21, 325–329 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pei, D.W.: On equivalent forms of fuzzy logic systems NM and IMTL. Fuzzy Sets and Systems 138, 187–195 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, G.J.: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yong-lin Liu
    • 1
  • Mei-ying Ren
    • 1
  1. 1.Department of MathematicsWuyi UniversityWuyishanP.R. China

Personalised recommendations