Existence and Uniqueness of Anti-fuzzy Ideal

  • Min Li
  • Yanping Feng
  • Ying Han
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 54)


Let S ⊆ [0,1] satisfying \(\underline{s}=infS\in S \) and C = {I t |t ∈ S} be an ascending chain of ideals in commutative ring R . This article presented and studied the following problem:

(1) Whether is there an anti-fuzzy ideal μ of R such that μ(R) = {μ(x)| x ∈ R}= S and \(C_{\mu}=\{\mu^{t}|t\in\mu(R)\}=C\) ?

(2) If the anti-fuzzy ideal satisfying (1) exists, then whether is it unique ? We built theorems of existence and uniqueness of anti-fuzzy ideal.


Anti-fuzzy ideal order-isomorphic cut set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: Fuzzy sets. Information and control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Mordeson, J.N., Malik, D.S.: Fuzzy Commutative. World Scientific Publishing, Singapore (1998)zbMATHGoogle Scholar
  4. 4.
    Saidi, F.B., laballah, A.: Exitence and uniqueness of fuzzy ideals. Fuzzy Sets and Systems 149, 527–541 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Yuan, X.H., Li, H.X., Luo, C.Z.: New cut sets and Their Applications. Fuzzy Systems and Mathematics 11(1), 37–43 (1997)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Min Li
    • 1
  • Yanping Feng
    • 2
  • Ying Han
    • 3
  1. 1.School of Mathematics and Quantitative EconomicsDongbei University of Finance and EconomicsDalianP.R. China
  2. 2.School of MathematicsLiaoning Normal UniversityDalianChina
  3. 3.Department of Mathematics and ComputerChaoyang Teacher’s CollegeDalianP.R. China

Personalised recommendations