Advertisement

Distribution Feeder Load Balancing Using Support Vector Machines

  • J. A. Jordaan
  • M. W. Siti
  • A. A. Jimoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5326)

Abstract

The electrical network should ensure that an adequate supply is available to meet the estimated load of the consumers in both the near and more distant future. This must of course, be done at minimum possible cost consistent with satisfactory reliability and quality of the supply. In order to avoid excessive voltage drop and minimise loss, it may be economical to install apparatus to balance or partially balance the loads. It is believed that the technology to achieve an automatic load balancing lends itself readily for the implementation of different types of algorithms for automatically rearranging the connection of consumers on the low voltage side of a feeder for optimal performance. In this paper the authors present a Support Vector Machines (SVM) implementation. The loads are first normalised and then sorted before applying the SVM to do the balancing.

Keywords

Support Vector Machine Load Balance Distribution Transformer Phase Balance Power Distribution System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, T., Cherng, J.: Optimal phase arrangement of distribution transformers connected to a primary feeder for system unbalance improvement and loss reduction using generic algorithm. IEEE Trans. Power Systems 17 (2000)Google Scholar
  2. 2.
    Civanlar, S., Grainger, J.: Distribution feeder reconfiguration for loss reduction. IEEE Trans. PWRD-3, 1227–1223 (1998)Google Scholar
  3. 3.
    Baran, M., Wu, F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Delivery 7 (1989)Google Scholar
  4. 4.
    Ukil, A., Siti, W., Jordaan, J.: Feeder load balancing using neural network. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 1311–1316. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    von Jouanne, A.: Assessment of voltage unbalance. IEEE Trans. On Power Systems 15(3) (2000)Google Scholar
  6. 6.
    Mathworks: MATLAB Documentation - Neural Network Toolbox. Version 6.5.0.180913a Release 13 edn. Mathworks Inc., Natick, MA (2002)Google Scholar
  7. 7.
    Pelckmans, K., Suykens, J., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., Vandewalle, J.: LS-SVMlab Toolbox User’s Guide, Version 1.5. Catholic University Leuven, Belgium (2003), http://www.esat.kuleuven.ac.be/sista/lssvmlab/
  8. 8.
    Ukil, A., Siti, M., Jordaan, J.: Feeder Load Balancing Using Combinatorial Optimization-based Heuristic Method. In: 13th IEEE International Conference on Harmonics and Quality of Power (ICHQP), Wollongong, New South Wales, Australia (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. A. Jordaan
    • 1
  • M. W. Siti
    • 1
  • A. A. Jimoh
    • 1
  1. 1.Tshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations