Compensation for Speed-of-Processing Effects in EEG-Data Analysis

  • Matthias Ihrke
  • Hecke Schrobsdorff
  • J. Michael Herrmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5326)


We study averaging schemes that are specifically adapted to the analysis of electroencephalographic data for the purpose of interpreting temporal information from single trials. We find that a natural assumption about processing speed in the subjects yields a complex but nevertheless robust algorithm for the analysis of electrophysiological data.


Negative Priming Dynamic Time Warping Subdivision Scheme Biological Cybernetic Late Positive Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flexer, A.: Data mining and electroencephalography. Stat. Meth. Medical Res. 9, 395 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Woody, C.D.: Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Medical and Biological Engineering and Computing 5, 539–553 (1967)CrossRefGoogle Scholar
  3. 3.
    Picton, T.W., Lins, O.G., Scherg, M.: The recording and analysis of event-related potentials. In: Boller, F., Grafman, J. (eds.) Handbook of Neuropsychology, pp. 3–73. Elsevier, Amsterdam (1995)Google Scholar
  4. 4.
    Gibbons, H., Stahl, J.: Response-time corrected averaging of event-related potentials. Clinical Neurophysiology 118, 197–208 (2007)CrossRefGoogle Scholar
  5. 5.
    Schrobsdorff, H., Ihrke, M., Kabisch, B., Behrendt, J., Hasselhorn, M., Herrmann, J.M.: A Computational Approach to Negative Priming. Connection Science 19(3), 203–221 (2007)CrossRefGoogle Scholar
  6. 6.
    Ihrke, M.: Negative priming and response-relation: Behavioral and electroencephalographic correlates. Master’s thesis, U. Göttingen (2007),
  7. 7.
    Haig, A.R., Gordon, E., Rogers, G., Anderson, J.: Classification of single-trial ERP sub-types. Electroencephalogry Clinical Neurophysiology 94(4), 288–297 (1995)CrossRefGoogle Scholar
  8. 8.
    Truccolo, W.A., Ding, M., Knuth, K.H., Nakamura, R., Bressler, S.L.: Trial-to-trial variability of cortical evoked responses. Clinical Neurophysiology 113(2), 206–226 (2002)CrossRefGoogle Scholar
  9. 9.
    de Weerd, J.P.: A posteriori time-varying filtering of averaged evoked potentials. I. Introduction and conceptual basis. Biological Cybernetics 41(3), 211–222 (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Nagelkerke, N.J.D., Strackee, J.: Some notes on the statistical properties of a posteriori Wiener filtering. Biological Cybernetics 33(2), 121–123 (1979)CrossRefzbMATHGoogle Scholar
  11. 11.
    Truccolo, W.A., Ding, M., Bressler, S.L.: Variability and interdependence of local field potentials. Neurocomputing 38(40), 983–992 (2001)CrossRefGoogle Scholar
  12. 12.
    Ciganek, L.: Variability of the human visual evoked potential: normative data. Electroencephalogr. Clin Neurophysiol. 27(1), 35–42 (1969)CrossRefGoogle Scholar
  13. 13.
    Basar, E., Gonder, A., Ozesmi, C., Ungan, P.: Dynamics of brain rhythmic and evoked potentials. Biological Cybernetics 20(3-4), 137–143 (1975)CrossRefGoogle Scholar
  14. 14.
    Lange, D.H., Siegelmann, H.T., Pratt, H., Inbar, G.F.: Overcoming selective ensemble averaging: unsupervised identification of event-related brain potentials. IEEE Transactions on Biomedical Engineering 47(6), 822–826 (2000)CrossRefGoogle Scholar
  15. 15.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B 63(2), 411–423 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Woldorff, M.G.: Distortion of erp averages due to overlap from temporally adjacent erps: Analysis and correction. Psychophysiology 30, 98–119 (1993)CrossRefGoogle Scholar
  17. 17.
    Myers, C., Rabiner, L.: A level building dynamic time warping algorithm for connected word recognition. IEEE Transact. Acoustics, Speech, and Signal Proc. 29, 284–297 (1981)CrossRefzbMATHGoogle Scholar
  18. 18.
    Keogh, E.J., Pazzani, M.J.: Derivative Dynamic Time Warping. In: First SIAM International Conference on Data Mining (SDM 2001) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthias Ihrke
    • 1
    • 2
  • Hecke Schrobsdorff
    • 1
    • 2
  • J. Michael Herrmann
    • 1
    • 3
  1. 1.Bernstein Center for Computational Neuroscience GöttingenGermany
  2. 2.MPI for Dynamics and Self-OrganizationGöttingenGermany
  3. 3.Institute for Perception, Action and BehaviourUniversity of Edinburgh Informatics ForumEdinburghU.K.

Personalised recommendations